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Chapter 1

Opinion dynamics under opposition

Abstract

We study a DeGroot-like opinion dynamics model in which agents may oppose other agents.
As an underlying motivation, in our setup, agents want to adjust their opinions to match
those of the agents they follow (their ‘ingroup’ or those they trust) and, in addition, they
want to adjust their opinions to match the ‘inverse’ of those of the agents they oppose (their
‘outgroup’ or those they distrust). Our paradigm can account for a variety of phenomena
such as consensus, neutrality, disagreement, and (functional) polarization, depending upon
network (multigraph) structures and specifications of deviation functions, as we demonstrate,
both analytically and by means of simple simulations. Psychologically and socio-economically,
we interpret opposition as arising either from rebels; countercultures; rejection of the norms
and values of disliked others, as ‘negative referents’; or, simply, distrust.

1.1 Introduction

On many issues of everyday life, such as economic, political, social, or religious agendas, disagreement
among individuals is pervasive: whether or not Iraq had weapons of mass destructions,1 the scientific
standing of evolution, whether taxes/social subsidies/unemployment benefits/(lower bounds on) wages
should be increased or decreased, the right course of government in general, the effectiveness of alterna-
tive (or ‘standard’) medicine such as homeopathy, the effectiveness and appropriateness of death penalty,
etc., are all highly debated despite the fact that plenty of data bearing on these issues is available.2 In
fact, in certain contexts such as the political arena, disagreement is ‘built in’ into and part of the system
of opinion exchange. Yet, it has been observed that, contradicting this factual basis, the phenomenon
of disagreement is not among the predictions of, in the social and economic context, renown and widely
used theoretical models of opinion dynamics, whether they are based on fully rational, Bayesian, agents
or boundedly rational or non-Bayesian actors (see, e.g., the discussions in Acemoglu and Ozdaglar, 2011;
Acemoglu, Como, et al., 2012; Yildiz et al., 2012)). Namely, in these models, a standard prediction is
that agents tend toward a consensus opinion, that is, that all agents eventually hold the same opinion
(or belief)3 about any specific issue. Typically, this applies to both Bayesian frameworks — which is
the reason why Acemoglu and Ozdaglar (2011) call them “[no] natural framework[s] for understanding
persisent disagreement” (p. 6) — and non-Bayesian setups such as the famous DeGroot model of opin-
ion dynamics (DeGroot, 1974), where consensus obtains as long as the social network wherein agents

1See the polling data in “Iraq: The Separate Realities...” (World Public Opinion, 2006).
2Some of our examples are taken from Golub and Jackson (2012) and Acemoglu and Ozdaglar (2011). We also note,

however, that the ‘scope’ of disagreement in society is disputed in the relevant literature, see, e.g., Baldassari and Bearman
(2007).

3Typically, in the literature, the term belief is used when there exists a truth for an agenda, and the term opinion is
used when truth is not explicitly modeled, although this may vary from author to author and discipline to discipline. In
this work, where we only consider the latter situation, we typically say that agents hold opinions on issues, but we take
the freedom to occasionally use both terms interchangeably.

7



CHAPTER 1. OPINION DYNAMICS UNDER OPPOSITION 8

communicate with each other is strongly connected (and aperiodic).4

Concerning the non-Bayesian DeGroot model, as we consider in this work, a few amendments have
more recently been suggested which are capable of producing disagreement among agents. In one strand
of literature, models including a homophily mechanism, whereby agents limit their communication to
individuals whose opinions are not too different from their own, can reproduce patterns of opinion
diversity and disagreement (Hegselmann and Krause, 2002; Hegselmann and Krause, 2005; Hegselmann
and Krause, 2006; Deffuant et al., 2000).5 In another strand, Daron Acemoglu and colleagues (cf.
Acemoglu and Ozdaglar, 2011; Yildiz et al., 2012) introduce two types of agents, regular and stubborn,
whereby the latter never update their opinions but ‘stubbornly’ retain their old beliefs, which may be
considered an autarky condition; multiple stubborn agents with distinct opinions on a certain agenda may
then draw society toward distinct opinion clusters. Such stubborn agents, it is argued, may appear in the
form of opinion leaders, (propaganda) media, or political parties that wish to influence others without
receiving any feedback from them. Ultimately, the assumption of stubbornness appears problematic,
however, since complete autarky in reality probably very rarely obtains (cf. the famous ‘no man is an
island’ condition according to which agents are generally interconnected, even in fragmented societies,
cf. Acemoglu and Ozdaglar, 2011).6

In this work, we investigate an alternative explanation of disagreement. We consider a non-Bayesian
DeGroot-like opinion dynamics model where agents are related with each other via two types of links:
one link type represents the usual ‘weight’ that one agent places upon another in DeGroot learning
models — these weights, in DeGroot models, typically represent ‘trust’ between agents, importance, or
simply a ‘listening/connectedness structure’ and are given by real numbers, and, in our model, have
the interpretation of strength or intensity of relationship between two agents — and the other link
type represents whether or not agents oppose each other, whereby opposition is given as a functional
relationship (‘endomorphism’, a mapping from the set of possible opinions to itself) on opinions. In
short, in our model, one link type represents kind of relationship between agents (opposition or not)
and the other represents intensity of relationship. The non-opposition case, which we also refer to as
following (‘one agent follows another agent’s opinion’), is the simple situation where an agent maps
another agent’s opinion to itself via the identity function and corresponds to the standard operation
— although not usually explicated — in DeGroot learning models. The opposition case, which we also
refer to as deviation or deviating (‘one agent deviates from another agent’s opinion’) is our model’s novel
ingredient: in its most abstract form, it simply means that an agent inverts another agent’s opinions via
an endomorphism that is not the identity function. Then, after inverting or not, agents take a weighted
arithmetic average, as in standard DeGroot learning models, of all other agents’ possibly inverted opinion
signals. This process of inverting or not and subsequent averaging is repeated ad infinitum and one of
the questions we ask is about the limiting results of the mechanism: e.g., in the limit, will agents tend
toward a consensus or will they disagree?

Our model is probably most easily understood in the setup of a ‘binary voter’ model where only
two possible opinions are available (candidate A or B; policy A or B; etc.). Here, the opposition case
necessarily means that, if agent i opposes agent j, i will invert j’s opinion to B, provided that j holds
opinion A, and to A otherwise. Agent i does so for all of his neighbors, leaving the opinions of agents he
follows unchanged, and then averages these (possibly inverted) opinions in order to form his next period
opinion; of course, in the discrete case, averaging by arithmetic means may not be well-defined and
here, we would, e.g., instead consider the operation of i adopting the (weighted) majority opinion of his
neighbors’ possibly inverted opinion signals. As indicated, we thus allow agents to have both individual

4For a recent discussion of the ‘problem of consensus’, see, e.g., Acemoglu and Ozdaglar (2011); for an early discussion
of the problem, see, e.g., Abelson (1964).

5However, much depends on the precise modeling of homophily. If homophily means that agents with distinct opinions
never talk to each other, then disagreement is a likely outcome. However, if homophily is modeled in such a way that agents
with distinct beliefs only place low(er) trust weights upon each other, then, again, agreement is a standard prediction, see,
e.g., Pan (2010).

6As still another explanation of disagreement in DeGroot learning models, it might be argued that even the standard
model predicts consensus only as a limiting result and that, for all finite intermediate communication stages, disagreement
is in fact in accordance with the model. Golub and Jackson (2012) seem to adhere to this interpretation. Problematic
about this is that the standard models typically not only imply (full) agreement in the long run but also ‘ε-agreement’
within short periods of time.
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neighborhoods (whom they are connected with at all) and individual opposition behavior (whom they
follow/deviate from), while, as a first approximation and for simplicity reasons, we do not allow agents to
have individual deviation functions, that is, the choice of deviation function is fixed within a population
of agents.

Opposition behavior, or deviating, as we have sketched, may be a plausible behavioral assumption
from a variety of viewpoints. Firstly, as discussed, in politics, for example, opposition toward members
of other parties, most typically the governing party in charge, is so common that opposition may even be
considered ‘blind’ (Jones, 1995; Cohen, 2003), negating whatever opinions competitors hold. Secondly,
deviating from an opinion signal may also be plausible when an agent is (suspected of) lying; see,
for instance, in the economics context, the abundance of experimental evidence from cheap-talk games
(Gneezy, 2005; Rode, 2010; Sutter, 2009). In the following, we discuss four more possible justifications
of opposition (that are related both to each other and the justifications brought forth thus far), one
based on the concept of rebels who derive utility from making different choices than (certain) other
agents; one based on the concept of countercultures like hippies, punks, etc., that inherently tend to
counteract mainstream beliefs, actions, and opinions (in political terms, countercultures may be thought
of as playing the opposition parties’ roles); one based on the concept of rejection of the norms of disliked
interaction partners, as has been outlined, e.g., in psychology and sociology, as an important motivation
underlying human behavior; and one based on the concept of distrust, whereby opposition is thought
of as arising from a distrusting stance toward (certain) others, which may include the supposition that
certain others are not truthful.

• It has been argued that some agents, e.g., rebels, in contrast to conformists (see the models of Cao
et al., 2011 and Jackson, 2009, p.271), may derive utility simply from the fact of making different
(opinion) choices than their neighbors. Cao et al. (2011) argue that an attitude of negation,
rebelism, may be merely ‘(intellectually) fashionable’, quoting Krugman on his defense of free
trade (Krugman, 1996) as saying that some intellectuals attack the concept in question, free trade,
merely for the reason that “in a culture that always prizes the avant-garde, attacking that icon
[free trade] is seen as a way to seem daring and unconventional.” In Zhang et al. (2013), rebels
and conformists are interpreted within a ‘fashion’ context.

• Opposition of opinions and beliefs of others may also arise in the context of the phenomenon of
countercultures. In fact, counterculture, as defined by Yinger (1977), refers to a group of individuals
who hold “a set of norms and values [...] that sharply contradict the dominant norms and values
of the society of which that group is a part” (p.833) and who stand “in sharp opposition to the
prevailing culture” (p. 834).7 Accordingly, members of a counterculture define their norms, values,
opinions and beliefs negatively (or invertedly) with respect to the norms, values, opinions, and
beliefs held by the ‘mainstream culture’, at least with respect to certain agendas. This aspect of
functional opposition is also emphasized by Davis (1971) who states that “[...] hippies, too, are
an instance par excellence of a contraculture whose raison d’être [...] lies in its members’ almost
studied inversion of certain key middle class American values and practices.” Essentially, thus,
countercultures do not simply ignore the opinions of others, but rely on them, as their contrast.
It has also been claimed that countercultures are an invariant force in human history (see the
discussion in Yinger, 1977 and others), present in ancient and tribal societies as well as throughout
the modern era (including, in more recent times, the hippies, the rock experience or Hare Krshna),
with prominent relevance, e.g., in modern arts.8 Finally, countercultures have been said to be the
ultimate drivers, via their dialectic opposition of current beliefs, behind change (see the discussion
and references in Yinger (1977)).

• Opposition is also closely related to what has, a.o., been termed rejection of beliefs, actions, and
values of others. According to this concept, agents change their normative systems to become

7Yinger (1977) also gives the terms reversal, inversion, and opposition as being definitoric for countercultures, see also
Yinger (1960).

8 In particular, it is contended that countercultures are particularly prominent under conditions of the modern society
— rapid economic growth; rapid importation of new ideas, techniques, and goods; sharp increase in life’s possibilities; lower
participation in intimate and supporting social circles; a loss of meaning in the deepest symbols and rituals of society; etc.
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more dissimilar to interaction partners they dislike (cf. Abelson, 1964; Kitts, 2006; Tsuji, 2002;
cf. also Groeber, Lorenz, and Schweitzer, 2013) insofar as disliked others may serve as ‘negative
referents’ who inspire contrary behavior (see the discussion in Kitts, 2006). For example, in the
simulational study of Fent, Groeber, and Schweitzer (2007), agents maximize utility functions that
include positive terms for their ingroup members — that is, agents strive to choose norms or traits
similar to those of their ingroup — and negative terms for their outgroup members — that is,
agents, in addition, strive to choose norms or traits dissimilar to those of their outgroup, which
entails both attractive and repulsive forces acting upon agents. We note that ingroup favoritism
and outgroup ‘discrimination’ are important and well-established notions in social psychology (see,
for instance, Brewer, 1979; Castano et al., 2002) that have also more recently been included in
economists’ models (cf., e.g., in an experimental context, Charness, Rigotti, and Rustichini, 2007;
Fehrler and Kosfeld, 2013, etc.).

We also note that in social network theory, antagonistic relationships between agents are nothing
novel, with early work in this context dating back to the 1940’s and 1950’s already (see Chapter
5 in Beasley and D. Kleinberg, 2010 and references therein). Applications have ranged from
international relations (alliances vs. hostile relations) and trust/distrust much in the same way as
we indicate below.9 Often, the concept of signed networks (network links have negative or positive
‘signs’) has been used to model both positive and negative influences. Novel in our context is the
application of these notions to the problem of opinion dynamics, but see also our discussion in
Section 1.2.

• Distrust.10 Opposition, or deviating, may also be thought of as arising from distrust between
agents, e.g., in the form of distrusting belief-integrity (in our situation, believing that the other
person does not tell the truth), institution-based distrust (believing that appropriate, e.g. legal,
structural conditions that are conducive to situational success are not in place), or, generally, a
disposition to disrust, also referred to as distrusting stance or suspicion to distrust (a consistent
tendency to not be willing to depend on general others across a broad spectrum of situations and
persons).11 In fact, as shown by Mellinger (1956) (see also the typology of Newcomb, 1953), distrust
in communication may lead to aggression in a sender-receiver setting, that is, to a maximizing of
(presumed) disagreement between sender and receiver, which may entail that, e.g., the receiver
deviates from the signal sent by the receiver; see also the recent evidence from cheap-talk games
under situations of distrust (cf. Rode, 2010), where it is shown that distrust may lead to a larger
deviation rate among receivers.

As concerns the implications of distrust, distrust in communication may be beneficial, in particular,
because distrust may prevent harm from distrustors (e.g., preventing them from making the ‘wrong’
decision in cheap talk games; for a more general setting, see, e.g., Schul, Mayo, and Burnstein,
2008). However, too much distrust may lead to paranoid cognitions, as McKnight and Chervany
(2001) emphasize, where “no matter what the other party says or does, their actions and words
are interpreted negatively”, so that “a balance of trust and distrust is important” (p.45). We also
point out that distrust may be a more severe issue in certain institutional settings12 than in others;
in particular, it has apparently become more prevalent in recent times (Deutsch, 1973; Mitchell,
1996; Rotter, 1971; Aupers, 2012).13

The outline of this work is as follows. First, to illustrate key concepts and ideas, we start with a
‘discrete majority voting DeGroot model’ where, in each period, agents adopt their neighbors’ weighted

9Recent empirical validity of both positive and negative relationships between individuals in social networks is, amongst
others, provided in Leskovec, Huttenlocher, and J. M. Kleinberg (2010).

10As one particular example, which can also be subsumed under the notion of countercultures, of ‘large-scale’ distrust,
modern conspiracy culture, which distrusts ‘conventional’ and ‘official’ explanations of the order of things (such as the
assassination of John F. Kennedy, the 9/11 attacks, etc.), may be cited (cf. Aupers, 2012).

11Here, we follow the distrust typology of McKnight and Chervany (2001).
12For example, in anarchy, dictatorship, etc.; to make a case, Mishler and Rose (1997) call distrust the “predicted legacy

of Communist rule”, see also Howard (2002).
13Trust, or distrust, is clearly also related to income; see, e.g., Ananyev and Guriev (2013) and references therein, and

to personal experiences (Nee, Opper, and Holm, 2013).
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majority opinion, where, as throughout our paper, we allow agents to invert the opinions of certain other
agents. In this discrete model, the set of possible opinions is finite or even binary (‘candidate A or B’),
and, to our knowledge, the analysis of the repeated weighted majority voter model alone, even without
opposition, is a novel setting.14 Subsequent to the discrete setup, we consider the continuous model
where agents hold opinions that lie in a convex subset of the real line and update opinions by taking
weighted arithmetic averages of their peers’ opinions. In general, the differences between the discrete
and the continuous setups are, firstly, that the discrete model is ‘more robust’ to changes, both in the
opinion vectors and the structure of the social networks; this comes as no surprise since, to sketch an
example, if 90 neighbors of an agent i hold opinion A and 10 hold opinion B, then i will favor A over
B even when a moderate or large quantity of his neighbors change their mind, while, in the continuous
case, arbitrarily small changes in neighbors’ opinions may always impact i’s opinion. Secondly, from a
modeler’s perspective, the continuous model is simpler to analyze because of the availability of strong
mathematical theorems in this case (e.g., results on limits of iterates of continuous functions, continuous
fixed-point theorems, spectra of (linear) operators, etc.). Accordingly, in the discrete model, we will
content ourselves with results on opinion profiles agents can, or cannot, converge to (fixed-points of
the opinion update operators), while in the continuous model, we in addition study actual dynamics.
Concerning positive results, both the discrete and the continuous version of our opposition DeGroot
model allow the following outcome scenarios.

• Consensus: In the discrete model, opposition may have no impact at all as long as the groups of
agents that agents oppose are not ‘influential enough’; thus, insofar as the non-opposition model can
generate consensus profiles as limits of DeGrootian opinion updating, our opposition model may
entail the same patterns, in this situation. A similar outcome can be observed in the continuous
model. Here, if the groups of agents that agents follow (agents’ ‘ingroups’) are ‘influential enough’,
then agents can reach arbitrary consensus profiles that depend on their initial opinions in the same
way as in the standard DeGroot model. In particular, we give sufficient conditions under which
agents can (and do) reach such consensus profiles and we show that consensus opinions are, in this
situation, given by a weighted linear combination of initial opinions where the weights represent
the social influence of the agents (Section 1.6.2).

• Neutrality: As an important special case of a consensus, we show that both in the discrete and
the continuous model, agents can reach a ‘neutral’ consensus profile. Neutrality means that the
opinions in the consensus profile ‘admit no opposite’ (of course, this depends on the specification
of the deviation endomorphism). We think of such opinions as ‘undisputable’, ‘uncontroversial’ or,
simply, ‘neutral’. We also show that both in the discrete and the continuous model, agents can only
attain neutral consensus profiles as long as agents’ outgroups are, again, ‘influential enough’ in that
the weights that agents assign them (a single one suffices) exceed a certain threshold. Moreover, for
the continuous model under affine-linear deviation functions, we show that our opposition model
typically leads agents to neutral consensus profiles, as limits of the updating dynamics; we give
necessary and sufficient conditions on when this happens.

To say another word on neutral consensus opinions, we also think of this result as a particular kind
of ‘withdrawal’ of opinion that has empirically, e.g., been observed in situations of distrust in com-
munication (cf. Mellinger, 1956). In fact, if opinions are generally distrusted (opposed/inverted),
then it may be safest to utter an opinion neutral enough to admit no opposite (such as ‘I don’t
know’, rather than affirmation or negation); at least, it may be an equilibrium in which no one
has a unilateral incentive to defect, even though, of course, neutrality may not be desirable from a
‘truth perspective’, as we discuss in the conclusion.

• Disagreement: If opposition is ‘hard enough’ or if the distribution of deviation endomorphisms
satisfies a certain pattern (which we call ‘anti-opposition bipartite’) agents may disagree forever
(cf. Example 1.4.5) and their opinions may even cyclically repeat. Hard opposition may also lead
to heavy short-term fluctuations of opinions (cf. Kramer, 1971) as Figure 1.5 illustrates. In the

14The binary voter (DeGroot) model considered in Yildiz et al. (2012) is of a much different nature than our approach
since it considers agents who randomly adopt one of the neighbors’ opinions, rather than by averaging via majority rule.
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discrete model, disagreement (or non-consensus) may typically occur both in the non-opposition as
well as in the opposition setup, although disagreement likelihood tends to increase with opposition
(cf. Figure 1.9).

• Polarization: As a special case of disagreement, we show that a certain distribution of deviation
endomorphisms (which we call ‘opposition bipartite’) admits polarization as a fixed-point of opinion
updating dynamics. By polarization, we mean that agents’ opinions cluster in two distinct regimes
of the opinion space. For the continuous model and for affine-linear deviation endomorphisms, we
derive necessary and sufficient conditions under which opinion dynamics always lead to polarization,
no matter the agents’ initial opinions. Our models admit, moreover, functional polarization in
which what the two groups of agents believe are opposites of each other rather than arbitrary,
unrelated, disagreeing opinions. Functional polarization would plausibly be the predicted outcome
under countercultural opposition, for example, as our above discussion suggests.

As our work’s highlight and main theorem, we present, in Theorem 1.6.2, necessary and sufficient condi-
tions on when agents, in our setup, polarize, reach a neutral consenus, and diverge (another special case
of disagreement), for arbitrary initial opinions of agents, as limit results of our DeGroot-like ‘opposition’
opinion dynamics process; the theorem holds for the special case when the deviation endomorphism has
a form we call ‘soft opposition’ (which yields networks, or ‘multigraphs’, that correspond to the signed
networks discussed in the social networks theory literature) and when the network within which agents
communicate is symmetric. Our necessary and sufficient conditions are purely in the language of graph
theory, which renders them clear and attractive.

The structure of this work is as follows. In Section 1.2, we survey variants of DeGroot learning
proposed in recent years. In Section 1.3, we outline our model mathematically. In this context, we
also give different economic justifications of our opposition DeGroot learning process and detail possible
choices of deviation endomorphisms. Before outlining our main findings and their proofs in Sections 1.5,
on the discrete DeGroot model, and 1.6, on the continuous variant, we introduce definitions and further
mathematical notation and concepts in Section 1.4. We also give a few introductory examples there.
Finally, we conclude in Section 1.7.

1.2 Related Work

Early and frequently cited predecessors of DeGrootian opinion dynamics are French (1956) and Harary
(1959), although the now famous ‘averaging’ model of opinion and consensus formation has only been
popularized through the seminal work of DeGroot (1974). At about the same time, Lehrer and Wagner
(Wagner, 1978; Lehrer and Wagner, 1981; Lehrer, 1983) have developed a model of rational consensus
formation in society that, in both its implications and its mathematical structure, is very similar to the
DeGroot model, although behaviorally substantiated in more detail. Friedkin and Johnsen (1990) and
Friedkin and Johnsen (1999) develop models of social influence that generalize the DeGroot model. In
more recent years, a renewed interest in the DeGroot model of opinion and consensus formation has
emerged, leading to a number of extensions proposed. For example, DeMarzo, Vayanos, and Zwiebel
(2003), besides sketching psychological justifications of DeGroot learning, discuss time-varying weights
on own beliefs that capture, e.g., the idea of a ‘hardening of positions’: over time, individuals may be
more inclined to rely on their own beliefs rather than on those of their peers. Noteworthy are moreover
the models of Deffuant et al. (2000) and of Hegselmann and Krause (2002), both of which are very similar
in spirit; the two models mainly differ from each other in that, in the former, two randomly determined
agents, rather than all agents, update opinions in each time step. The postulate of both models is that
agents take only those individuals with ‘similar’ opinions into account (that is, assign them positive
weights), which may be considered a tenet of homophily. In Hegselmann and Krause (2002), this leads
to very interesting patterns of opinion formation in which, most prominently, the paradigms of plurality,
polarization and consensus are observed, depending on specific parametrizations (most importantly, the
definition of similarity, i.e., whether individuals are tolerant or not toward other opinions, affects which
opinion pattern emerges). There is much research that directly relates to the Hegselmann and Krause
(2002) model, from various disciplines; see, e.g., Hegselmann and Krause (2005), Hegselmann and Krause



CHAPTER 1. OPINION DYNAMICS UNDER OPPOSITION 13

(2006), Douven and Riegler (2009a), Douven and Riegler (2009b), Douven and Riegler (2010), Groeber,
Lorenz, and Schweitzer (2013), and many others. As we have mentioned, whether homophily leads to
disagreement may substantially depend on the specification of homophily. For example, Pan (2010)
discusses a homophily variant in which agents assign trust weights to other agents in proportion to
agents’ current opinion distance — rather than by assigning uniform trust weights for agents within
a fixed distance to own beliefs and zero trust weights to agents outside that radius,15 as done in the
Hegselmann and Krause models and in Deffuant et al. (2000) — which typically entails a consensus, in
the limit. Homophily and DeGroot learning is also investigated in Golub and Jackson (2012), where
the relationship between the speed of DeGrootian learning and homophily is discussed; in this model,
homophily is modeled by designing random networks where the link probability between different groups
is non-uniform, and is, in fact, higher between individuals of the same group.16 Here, only networks that
lead to a consensus are analyzed. Further extensions of the classical DeGroot model include Golub and
Jackson (2010), whose contribution is to analyze weight structures such that DeGroot learners whose
initial beliefs are stochastically centered around truth converge to a consensus that is correct, and the
works of Daron Acemoglu and colleagues. For example, Acemoglu, Ozdaglar, and ParandehGheibi (2010)
distinguish between regular and forceful agents (the latter influence others disproportionately), such as, in
an economic interpretation, monopolistic media, and Acemoglu, Como, et al. (2012) distinguish between
regular and stubborn agents (the latter never update); in Yildiz et al. (2012), a discrete version of the
DeGroot model with stubborn agents is analyzed in which regular agents randomly adopt one of their
neighbors’ binary opinions. Concerning the ‘consensus problem’, forceful agents do generally not entail
long-term disagreement between agents, and stubborn agents, trivially, entail long-term disagreement
only if they are exogenously ‘hard-wired’ to hold distinct initial opinions.17

Another interesting DeGroot variant is discussed in Buechel, Hellmann, and Klößner (2012) and
Buechel, Hellmann, and Klößner (2013) where agents’ stated opinions may differ from their true (or
private) opinions and where it is assumed that agents generally wish to state an opinion that is close to
that of their reference group even if their true opinions may be very different (which is the ‘conformity’
aspect of their model); a similar approach is given in Buechel, Hellmann, and Pichler (2012), where
DeGroot learning is applied to an overlapping generations model in which parents transmit traits to
their children. These papers are related to our own work in that, in both cases, agents may deviate from
(other) agents’ opinion signals. In our work, receivers may deviate from the signals sent by senders, and
in Buechel, Hellmann, and Klößner (2013) senders may deviate from their own true opinions. Moreover,
since the latter model also allows counter-conformity (and not only conformity), it, too, incorporates an
‘opposition modus’, as in our model. It does, however, not induce long-term disagreement for strongly
connected and closed groups of agents, instead leading them to a consensus or to a divergence of opinions
rather than to a stable polarization.18 A further modeling that comes close to our own approach, and
which constitutes a specialization of our setup,19 is the work of Cao et al. (2011), who study ‘rebels’
in a DeGroot learning setting. In their case, rebels are agents who hold views that invert the average
opinion of their neighbors, which is equivalent, from our perspective, to opposing everyone but one’s
self. In this model, compared with our approach, since rebels have no ingroup other than themselves,
long-term polarization does not ensue. Cao et al. (2011) show that their framework generally, except for
very special cases, entails a ‘doctrine of the mean’ in which agents tend toward holding ‘mean opinions’
(in our terminology, agents hold neutral opinions).20,21

15This means that there is no communication whatsoever between agents whose opinions are ‘too distant’.
16A crucial difference between this model and the other homophily variants is that homophily is endogenous in the latter,

while it is exogenous in the Golub and Jackson (2012) model.
17The concept of ‘stubbornness’ does also not provide insight into inter-group antagonisms, as we consider.
18The ‘problem’ is that the model admits no ingroup/outgroup structure as in our framework. Agents want to

conform/counter-conform to a single reference group, without having possible adversary relations to different groups.
19In terms of modeling, not in terms of results.
20This result is due to the fact that their mode of oppposition is always ‘soft opposition’, as we define below.
21There are still other papers, from various different disciplines, that incorporate ideas of adversary relatioships in the

opinion formation process. For example, Zhang et al. (2013) interpret ‘rebels’ in a fashion context. Fent, Groeber, and
Schweitzer (2007) study a simulational model incorporating an ingroup/outgroup mechanism. Finally, Fan et al. (2012)
discuss opinion dynamics on signed networks in a simulational context, where the signs represent friendly and antagonistic
relationships. They quote Mao Zedong on this issue as saying: “We should oppose what enemies support, and support
what enemies oppose”. See also the work of Altafini (2013) and Shi et al. (2013).
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Social learning is also discussed in various other strands of literature, beyond the DeGroot opinion
dynamics model, such as in herding models (cf. Banerjee, 1992; Gale and Kariv, 2003; Banerjee and
Fudenberg, 2004), where agents usually converge to holding the same belief as to an optimal action.
This conclusion generally applies to the observational learning setting (cf. Rosenberg, Solan, and Vieille,
2006; Acemoglu, Dahleh, et al., 2011), where agents are observing choices and/or payoffs of other agents
over time and are updating accordingly. See also the references and the discussion in Golub and Jackson
(2010). General overviews over social learning, whether Bayesian or non-Bayesian, whether based on
communication or observation, are, in the economics context, for example, given in Lobel (2000) and
Acemoglu and Ozdaglar (2011).

1.3 Model

1.3.1 The basic setup

For the continous DeGroot model as we discuss, let S be a convex subset of the real numbers, that is,∑
j αjxj ∈ S for all finite numbers of elements xj ∈ S and all weights αj ∈ [0, 1] such that

∑
j αj = 1.

Below, we will usually think of S as the whole of R or of some (closed and bounded) interval [α, β] for
α ≤ β. For the discrete ‘majority voting’ DeGroot model, we let S be any finite set, without further
restrictions.

A set [n] = {1, 2, . . . , n} of n agents forms opinions about an agenda X where all opinions on X lie in
S. Initially, each agent i = 1, . . . , n has an exogenously specified initial opinion bi(0) on X. Then, agents
interact — that is, update their opinions — according to a weighted social ‘multigraph’. One type of
interaction patterns is represented via an n× n interaction (or ‘importance’) matrix W, where Wij > 0
indicates that i pays attention to j and where the size of Wij indicates the intensity of relationship
between i and j. We allow matrix W to be asymmetric, that is, Wij need not necessarily be equal to
Wji. Of crucial importance is also a second type of links between agents, namely, link types that indicate
whether agents follow or deviate from each other; the latter represents opposition behavior. Following
is encoded by the identity function F : S → S, with F (x) = x for all x ∈ S. Opposition is encoded
by a deviation function D : S → S, where we leave the form of D open other than that it not be the
identity function. Note that if S is finite with cardinality |S| = m, there are m!−1 = m · (m−1) · · · 1−1
possible choices for D. Now, for all agents i and j, i either follows or deviates from j; we summarize
these patterns in an n× n matrix F with Fij ∈ {F,D}. Again, F need not be symmetric. Also beware
the difference between F and W; the matrix W is an n×n matrix of real numbers, W ∈ Rn×n, while F
is an n× n matrix of functions from S to S, that is, F ∈ {φ |φ : S → S}n×n. We also call the entries in
F endomorphisms because both the domain and the range of the functions are identical. As discussed in
Section 1.1, the case Fij = D may result from a variety of circumstances, such as that i is a rebel, that i
disagrees with j in the form of, e.g., countercultural opposition, that j belongs to i’s outgroup, or simply,
that i distrusts j’s opinion signal for reasons some of which we have suggested in the named section, but
whose source we leave, ultimately, open. We assume moreover that Fij , like Wij , is exogenously given
and remains static over time, that is, agents do not change their attitude toward other agents. We also
presuppose, as indicated, that agents truthfully report their opinions at each time period t and that all
opinion signals are observable by all agents.

To describe opinion dynamics, in the continuous case, agents repeatedly take weighted arithmetic
averages of their neighbors’ (possibly inverted) opinion signals. Denoting by bi(t) ∈ S the opinion at
time t = 0, 1, 2, . . . of agent i on issue X, opinions thus evolve according to

bi(t+ 1) =

n∑
j=1

Wij · Fij(bj(t)), (1.3.1)

for all i = 1, . . . , n and all discrete time periods t = 0, 1, 2, 3, . . .. Rewriting the updating process (1.3.1)
in ‘matrix notation’, we write

b(t+ 1) = (W ◦ F)(b(t)), (1.3.2)
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where we let, qua definitione, the ‘operator’ W ◦ F act on a vector b ∈ Sn in the manner prescribed in

(1.3.1), i.e.,
(
(W ◦ F)(b)

)
i

def
=
∑n
j=1Wij · Fij(bj). Equation (1.3.2) may again be rewritten as,

b(t) = (W ◦ F)t(b(0)), (1.3.3)

by which we denote the t-fold application of operator W ◦ F on b(0), that is, f t(b) = f(· · · f(f(b))),
where f = W ◦ F.

Remark 1.3.1. In case F is the n × n matrix of identity functions, updating process (1.3.3) collapses
to the standard DeGroot learning model where (W ◦ F)t is simply the t-th matrix power of matrix W.

Remark 1.3.2. For short, we will usually write (W ◦ F)b instead of (W ◦ F)(b).

In the discrete case, we consider the following updating process,

bi(t+ 1) = arg max
s∈S

n∑
j=1

Wij1
(
Fij(bj(t)), s

)
, (1.3.4)

where 1(r, t) = 1 if r = t and zero otherwise. In other words, at time t+ 1, agent i adopts the weighted
majority opinion among his neighbors’ (possibly inverted) opinions at time t. Note that, in Equation
(1.3.4), there may be no unique maximum in which case further specification is necessary (see below).
For both the discrete and the continuous case, we use the compact notations (1.3.2) and (1.3.3).

As concerns intensity weights Wij , we require weights to be non-negative, Wij ≥ 0, with Wij = 0
indicating that agent i ignores agent j or, simply, that j is not in i’s social network (note that in this
case, it does not matter whether Fij = F or Fij = D). Usually, we also assume that W is row-stochastic,
that is, 0 ≤ Wij ≤ 1, for all i, j ∈ [n], and for all i ∈ [n],

∑n
j=1Wij = 1, but, in some contexts, we drop

this requirement and, thus, specify weight restrictions as we analyze the models.
We finally note that opinion evolution under process (1.3.2) may be visualized by operations in a

multigraph as in Figure 1.3 below (Section 1.4), where there are two possible types of links between agent
nodes.

1.3.2 Justifications of the DeGroot learning process

Myopic best-response updating

As has been pointed out by Golub and Jackson (2012), the standard DeGroot learning model may have
an interpretation as a myopic best-response updating in a pure coordination game (for a more general
setup, see Groeber, Lorenz, and Schweitzer, 2013). In our framework, the updating process may be
interpreted as resulting from a mix of a coordination game and an anti-coordination game. For example,
in the continuous case, if agents i = 1, . . . , n have utilities on beliefs b = (b1, . . . , bn) ∈ Sn as

ui(b) = −
n∑
j=1

Wij

(
bi − Fij(bj)

)2
= −

∑
j:i follows j

Wij(bi − bj)2 −
∑

j:i opposes j

Wij(bi −D(bj))
2,

(1.3.5)

then best-response dynamics — for each agent i, maximizing utility (1.3.5) with respect to bi — precisely
prescribes the updating process (1.3.1) as long as importance weights Wij are such that W is row-
stochastic.22 One interpretation of the utility functions (1.3.5) is that agent i has disutility from making
different opinion choices than neighbors he follows and has disutility from not deviating from, in the
manner described by deviation function D, the opinion choices of neighbors he opposes. We note that
when Fij = F for all i, j ∈ [n], then each consensus (c, . . . , c)ᵀ ∈ Sn is a Nash equilibrium of the
normal form game ([n], Sn, u(·)), for u(·) = (u1(·), . . . , un(·)), because, in this situation, all agents’
utility functions are at a maximum. When Fij = D for some agents i, j ∈ [n], but deviation function

22Moreover, this presupposes that Wii = 0.
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D has a fixed-point, D(x0) = x0 for some x0 ∈ S, then consensus (x0, . . . , x0)ᵀ is a Nash equilibrium of
(1.3.5) for the same reason. Below, in Sections 1.5 and 1.6, we show that such equilibria are the only
consensus Nash equilibria in this situation and we provide necessary and sufficient conditions when, in the
analytically tractable situation where D(x) is affine-linear, opinion updating process (1.3.3) leads agents
precisely to such a consensus Nash equilibrium. We note that since, by our discussion, the operator
W ◦F in opinion updating process (1.3.2) retrieves best responses of agents, under utility functions ui(·)
as in (1.3.5), to an opinion profile b(t), the fixed points of W ◦ F — that is, the point b such that
(W ◦ F)(b) = b — are, by definition of a Nash equilibrium, the Nash equilibria of the normal form
games ([n], Sn, u(·)), since, for each such a fixed-point, all players in [n] play best responses to the other
players’ actions (opinions). In the subsequent sections, we pursue the task of finding (W ◦ F)’s fixed
points in more detail.

In the discrete case, we may think of agents having utility functions

ui(b) = −
n∑
j=1

Wij(1− 1(Fij(bj), bi))

= −
∑

j:i follows j

Wij(1− 1(bj , bi))−
∑

j:i opposes j

Wij(1− 1(D(bj), bi))

= −
∑

j:i follows j,bi 6=bj

Wij −
∑

j:i opposes j,bi 6=D(bj)

Wij ,

(1.3.6)

where, again, we let 1(r, t) = 1 if r = t and zero otherwise. Namely, in case of utility functions of the
form (1.3.6), a best reponse of agent i with respect to the opinion vector b = (b1, . . . , bn)ᵀ is to choose
the weighted majority opinion of his neighbors’ (possibly inverted) opinion signals.

Boundedly rational Bayesian learning

In another interpretation — which, however, requires that there exist truths µ for topics X, which we
do not assume in our modeling — for the continuous model, as outlined by DeMarzo, Vayanos, and
Zwiebel (2003) for the situation when Fij is the identity function for all agents i, j ∈ [n], the updating
process (1.3.1) may be rationalized as follows.23 Agents initially receive noisy signals bi(0) = µ + εi
about issue X, where εi is a noise term with expectation zero and where µ is the true value of X. Then,
agents i = 1, . . . , n hear the opinions of the agents with whom they are connected, assigning subjective
precisions (inverse of variance) πij to agents j; if i is not connected with j, then agent i assigns precision
πij = 0. In the case where the signals are normally distributed, Bayesian updating from independent
signals at t = 1 implies the updating rule (1.3.1) with Wij =

πij∑n
k=1 πik

, since this weight structure yields

the minimum variance convex combination of n independent normally distributed random variables, each
with mean µ. As agents may not be connected with all other agents, e.g., due to exogenous constraints or
costs, they will generally wish to continue to communicate and update based on their neighbors’ evolving
beliefs, since this allows them to incorporate indirect information.24 The behavioral aspect of this model
concerns updating after time period t = 1. A Bayesian agent would adjust the updating procedure to
account for the possible duplication of information and for the “cross-contamination” of his neighbors
signals. In contrast, continuing to use the updating rule (1.3.1), which treats all information as ‘new’,
can be seen as a boundedly rational heuristic that addresses the complexity involved in fully Bayesian
updating and that is in accordance with the psychological condition DeMarzo, Vayanos, and Zwiebel
(2003) refer to as ‘persuasion bias’, the failure to adjust properly for information repetition.

Allowing Fij to take a ‘deviation form’ may then require an additional behavioral assumption, namely,
that the ‘true signals’ to be considered by agents i = 1, . . . , n in updating are not bj(t) but, instead,
Fij(bj(t)). In other words, this would mean to assume, from the perspective of agent i, that agent j
receives initial signal bj(0) such that Fij(bj(0)) has the form µ + εj (which might be plausible, e.g.,
when agent j is a liar or when his signal has been ‘corrupted’ or ‘distorted’, by whatever mechanism, as

23We follow here the argumentation structure given in Golub and Jackson (2012).
24Such indirect information may also be captured even when i is in fact connected with all other agents j, due to the

different precisions that agents may assign other agents.
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perceived by agent i); subsequently, sticking to the same updating rule and weighting structure would
correspond, again, to the discussed bounded rationality heuristic.

Aggregation theory

A third motivation for the continuous DeGrootian updating model (1.3.1), initially again for Fij = F for
all i, j ∈ [n], revolves around theoretical results from economic aggregation theory. We briefly sketch the
essence of the argument here. Aggregation theory is concerned with the problem of finding a function
G that maps ‘opinions’ of n experts on m topics (so far, we have considered a single topic X) to a
‘joint’ set of opinions on the m topics. Importantly, the opinions on the m topics must obey a ‘funding
restriction’ such as probabilistic coherence: for example, the m topics might be m states of the world
and the opinions might be probability assignments to the m states, one set of assignments for each
expert, such that the sum of the probabilities, per expert, over all states, is one (the funding restriction).
The purpose of the aggregator G is then, in this case, to assign a probability distribution over m states
to each valid n ×m matrix of probability distributions that captures the opinions of the n experts on
the m states. Classic theorems from aggregation theory (see, for example, McConway, 1981; Lehrer
and Wagner, 1981; Rubinstein and Fishburn, 1986; Dietrich and List, 2008; Herzberg, 2011) then state
that if G satisfies two apparently very intuitive and mild criteria, independence and unanimity, G is a
convex combination of the opinions of the n experts. Unanimity means that if all experts agree on one
topic, G must preserve this consensus. Independence (of irrelevant alternatives) means that Gj , the j-th
component of G, depends only on the opinions of the n experts on the j-th topic.

Thus, by the classical theorems mentioned, an apparently ‘rational’ way to aggregate the opinions
of the n agents would be by means of weighted averages, as in the updating process (1.3.1). In fact,
this (or similar) argumentation has been extensively made use of by Lehrer and Wagner (Wagner, 1978;
Lehrer and Wagner, 1981; Lehrer, 1983) in the 1970s and 1980s as a justification for DeGroot-like opinion
formation processes.25 As in the justification based on boundedly rational Bayesian learning, allowing a
deviation function may then be just an additional behavioral assumption about which signals (e.g., bj
or D(bj)) are to be aggregated in a rational way.26

1.3.3 Deviation functions

As indicated, the case when i follows j is naturally modeled by letting Fij be the identity, Fij(x) = x
for all x ∈ S, that is, i precisely follows the signal sent by j. Contrarily, the choice of deviation function
D that models opposition has been left unspecified so far. To define a few workable candidates, we first
consider the discrete case when S is the finite set S = {A1, . . . , AK}, for K ≥ 1. If S is an arbitrary
(finite) set, then any choice of D : S → S (which is not the identity function) seems equally plausible
— as mentioned, there are |S|! − 1 possibilities to specify D — so we consider the situation when the
elements in S have some meaning, at least in a relative sense, as when S is linearly ordered by some
ordering relationship < on S such that, without loss of generality, A1 < A2 < · · · < AK .

Example 1.3.1. Of course, when S is a finite subset of the real numbers (or integers), the usual <
relation on the reals (or integers) constitutes a natural linear order. Further interesting examples might
arise in the case when S, e.g., consists of (discrete) probabilistic propositions about likelihoods of events
such as when S = {“impossible”,“unlikely”,“possible”,“likely”,“certain”}, which may be thought of as
probabilistically ordered, i.e., “impossible” < “unlikely”, etc. Other such examples might include:

• S = {“disagree”,“agree”}, which may be thought of as being ordered by a ‘consent’ relationship,

• S = {“false”,“true”}, which may be thought of as being ordered by a ‘trueness’ relationship,

25However, the argumentation appears problematic from at least two perspectives. First, the named theorems hold only
for m ≥ 3. Secondly, why agents should stick, repeatedly, to the same weighted averaging updating rule is unexplained,
particularly, since, as outlined before, this implies that they double count information.

26This argumentation, if valid, could then also be used to justify why agents should take a weighted arithmetic average
of the beliefs of all other agents, rather than some different ‘mean function’ such as the harmonic, geometric, or quadratic
mean. In fact, the mathematics literature has provided an infinitude of different mean functions (see, for example, Hardy,
Littlewood, and Pólya, 1934), and, for instance, Krause and Hegselmann and Krause (Krause, 2009; Hegselmann and
Krause, 2005) discuss DeGroot-like updating processes with a variety of different weighted averages.
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• S = {“hate”,“dislike”,“neutral”,“like”,“love”}, which may be thought of as being ordered by a
‘emotional attitude’ relationship,

• S = {“strong reject”,“reject”,“borderline”,“accept”,“strong accept”}, which may be thought of as
being ordered by a ‘degree of acceptedness’ (at journals, conferences, etc.) relationship, etc.

If S is so ordered (by <), we consider two natural, as we think, examples of deviation functions.
The first one we call ‘hard opposition’: it is the deviation function that maps opinions to the ‘extreme’
opinions A1, the smallest element of S, and AK , the largest element of S.

Example 1.3.2 (Hard opposition). Hard opposition models that an agent i maps another agent j’s
opinion to one of the two ‘extreme’ opinions A1 and AK , depending on the ‘location’ of j’s opinion.
Formally, we assume that there exists Ā ∈ S such that D(x) = A1 if Ā < x, for x ∈ S, and D(x) = AK
if x < Ā. When x = Ā, we either assume that D(x) = x (D has a fixed point) or, conventionally,
D(x) = AK or D(x) = A1. For our above specified choices of S, this might mean, for instance,

• for S = {“disagree”,“agree”}: D(“agree”) = “disagree”, D(“disagree”) = “agree”, with Ā =
“agree”,

• for S = {“hate”,“dislike”,“neutral”,“like”,“love”}: D(x) = “love” whenever x = “hate”,“dislike”
and D(x) = “hate” whenever x = “like”,“love”. For Ā = “neutral”, we might let D(“neutral”) =
“neutral”,

and so on.

Our next ‘natural’ choice of deviation function, we call “soft opposition” (or ‘tit for tat’ opposition). It
models the situation when “more moderate” opinions are mapped to “more moderate” inverted opinions;
equivalently, more extreme opinions are mapped to more extreme opinions on the ‘other end’ of the
opinion spectrum.

Example 1.3.3 (Soft opposition). By soft opposition, we mean a deviation function where there is a
‘moderate’ center opinion Ā such that D maps opinions x more to the extremes (on the opposite site of
the opinion spectrum, whereby Ā is the focal point) the more distant they are to Ā. For instance, we
might have A1 < A2 < · · · < Ak < Ā < Ak+1 < · · · < AK with D(Ai) = AK−i+1 and D(AK−i+1) = Ai,
for i = 1, . . . , k, and D(Ā) = Ā. If S has even cardinality, we may think of Ā, slightly imprecise, as an
‘imagined’ additional element of S for which D is undefined.

For our above examples, this might mean,

• for S = {“disagree”,“agree”}: D(“agree”) = “disagree”, D(“disagree”) = “agree”, with Ā an
‘imagined’ focal point between “disagree” and “agree” (soft opposition and hard opposition may
coincide if S has only two elements),

• for S = {“hate”,“dislike”,“neutral”,“like”,“love”}: D(“hate”) = “love”, D(“dislike”) = “like”,
D(“neutral”) = “neutral”, D(“like”) = “dislike”, D(“love”) = “hate”, with Ā = “neutral”.

In Figure 1.1, we schematically sketch soft and hard opposition in the discrete case. In the continuous
case, when S is a convex subset of the real line that is in addition closed and bounded — that is, S is
an interval [α, β], with α, β ∈ R — hard opposition naturally corresponds to solving the maximization
problem, for all x different from α+β

2 ,

D(x) = argmaxb∈[α,β] |b− x| , (1.3.7)

which has a unique solution for all such x, namely, α and β, respectively. Thus, in the continuous case,
hard opposition can be thought of as arising from the principle to maximize disagreement, in an absolute
distance sense, with an agent that is opposed. Slightly problematic, from an analytical perspective,
would be here that D has, in the situation of hard opposition, a discontinuity at α+β

2 , no matter the
definition of D for this point, which potentially makes it less attractive as a modeling choice.
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Figure 1.1: Schematic illustration of soft (left) and hard (right) opposition on the set S =
{“hate”,“dislike”,“neutral”,“like”,“love”}. Elements x ∈ S are abbreviated with initial letters.

Soft opposition would in the continuous case of S = [α, β] naturally correspond to the operation,

D(x) = α+ β − x. (1.3.8)

which defines a continuous function and has a fixed point at α+β
2 . Moreover, in the case of S = [0, 1],

when S is the unit interval, soft opposition may be stochastically interpreted as probabilistic inversion,
which can be thought of as disagreeing, with an agent j, on all truth conditions for issue X, so that it
is apparently also an instance of the tenet to maximize disagreement. In the case of S = [−β, β], soft
opposition has the simple functional form D(x) = −x, which makes it an apparently very convenient
and tractable candidate of a deviation function.

We graphically illustrate deviation choices (1.3.7), together with some variations, and (1.3.8) in Figure
1.2, for S = [−1, 1].

1.4 Definitions, preliminaries and notation

We now define a couple of important concepts to be used in the remainder of this work. We start with
definitions relating to deviation functions and to the operator W ◦ F. Throughout, we let S be an
arbitrary non-empty set, the opinion spectrum or opinion space.

Definition 1.4.1. Let Y be an arbitrary set and let Q be an arbitrary function Q : Y → Y . By Fix(Q),
we denote the set of fixed points of Q, that is, the set of all x ∈ Y such that Q(x) = x.

Note that, in this work, we only consider Y = S and Y = Sn. Our next definition simply restates
what a deviation function is.

Definition 1.4.2. We call a function D : S → S deviation function (or opposition function) if Fix(D) (
S, that is, if there exist elements x ∈ S such that D(x) 6= x.

The points which D fixes, we call ‘neutral opinions’. In an economic interpretation, neutral opinions
may be thought of as opinions that ‘allow no opposite’ or that are ‘undisputable’. For instance, if S were
the set {“Yes”, “Nay”, “Undecided”}, then probably “Undecided” were a good candidate of a neutral
opinion. If D admits no neutral opinions, we call D ‘radical’.

Definition 1.4.3. We call an opinion x ∈ S for which D(x) = x neutral.

Definition 1.4.4. If Fix(D) = ∅, we call D radical.

If two opinions are ‘opposites’ of each other, from the perspective of deviation function D, we call
them ‘opposing viewpoints’.

Definition 1.4.5. We call a, b ∈ S opposing viewpoints if D(a) = b and D(b) = a.
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Figure 1.2: Deviation functions on S = [α, β] = [−1, 1]. Top left: Soft opposition D(x) = α+β−x = −x
on S. Top right: Hard oppositon on S. Bottom left: Hard opposition with fixed-point D(0) = 0. Bottom
right: A continuous extension of bottom left.

Next, we define mathematical convergence of opinion updating process (1.3.3). Our definition applies
both to the discrete and the continuous setup. Semantically, convergence means that each agent tends
toward a ‘limiting opinion’ — rather than, e.g., changing his mind indefinitely — under repeated opinion
updates as described by the updating processes in Section 1.3.

Definition 1.4.6. We say that W◦F is convergent for opinion vector b(0) ∈ Sn if limt→∞(W◦F)tb(0)
exists. Moreover, we say that W ◦F induces a consensus for opinion vector b(0) if W ◦F is convergent
for b(0) and limt→∞(W ◦ F)tb(0) is a consensus, that is, a vector c ∈ Sn with all entries identical.

Definition 1.4.7. We say that W ◦F is convergent if W ◦F is convergent for all initial opinion vectors
b(0) ∈ Sn. Moreover, we say that W ◦F induces a consensus if W ◦F induces a consensus for all initial
opinion vectors b(0) ∈ Sn.

Remark 1.4.1. In the discrete case, when S is a finite set and operation (W ◦F)b refers to a majority
update operation, convergence of W ◦F — if indeed it obtains — obtains after a finite amount of time.
This is because the sequence

(
b(t)

)
t∈N, with b(t) = (W◦F)tb ∈ Sn, cannot consist of an infinite number

of different opinion vectors in this case and must, in fact, repeat after time |S|n at the latest. In other
words, if S is finite, b(t0) = b(s0), for some distinct time points t0 and s0. Let s̄ be the smallest time
point such that b(s̄) = b(t̄), for some t̄ > s̄. Then, obviously, if and only if t̄ = s̄+1, W◦F is convergent
(for b(0)); otherwise, (W ◦ F)tb(0) ‘cycles’.
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Remark 1.4.2. We also note that, if W ◦ F is convergent, then b(∞) := limt→∞(W ◦ F)tb(0) is a
fixed-point of W ◦ F as long as W ◦ F is a continuous operator:

(W ◦ F)b(∞) = (W ◦ F) lim
t→∞

(W ◦ F)tb(0) = lim
t→∞

(W ◦ F)t+1b(0) = b(∞).

Continuity, in turn, depends on the matrix F and, in particular, on D(x) (since, certainly, F (x) = x
is a continuous function). If S is finite and W ◦ F is convergent (for b(0)), then b(∞) is a fixed-point
of W ◦ F no matter the specification of F, by Remark 1.4.1. Fixed-points of W ◦ F are interesting,
for instance, because they constitute Nash equilibria of the coordination games given in Section 1.3 as
justifications of our DeGroot learning model. Hence, if W ◦ F is continuous or if S is discrete, then if
(W ◦ F)t(b(0)) converges, it converges to a Nash equilibrium of the coordination games in question.

As a short-hand for subsequent sections, we introduce the following convenient notations, before
proceeding to more conceptual definitions again.

Definition 1.4.8. Let A ⊆ [n] be a subset of the set of agents and let i ∈ [n] be a particular agent. We
denote by Wi,A :=

∑
j∈AWij the total weight mass i assigns to group A.

Definition 1.4.9. For i = 1, . . . , n, we denote by Oi the set of agents that agent i opposes. Formally,
Oi = {j ∈ [n] |Fij = D}. We also call Oi “i’s opposed set/group of agents” or “i’s outgroup”. By Fi,
we denote the set of agents that i follows, Fi = {j ∈ [n] |Fij = F}. We also call Fi “i’s ingroup”.

Clearly, it holds that Oi ∩ Fi = ∅ and Oi ∪ Fi = [n] for all i ∈ [n].
Next, we formally introduce networks because of their relationship to our ‘matrix’ operators W ◦F.

Definition 1.4.10 ((Weighted) Network). A network, or graph, is a tuple G = (V,E) where V is a finite
set and E ⊆ V × V = {(u, v) |u ∈ V, v ∈ V }. We call V the vertices or nodes of graph G and E the
edges or links of G. Moreover, we call the network G weighted if there exist weights wuv for each edge
(u, v) ∈ E.27

We note that the edges of a network G represent a relationship between nodes (agents, in our case),
namely, whether or not two nodes are connected; weights generalize this binary relationship. In a
multigraph, instead of having only one link type between nodes, there may exist multiple link types.

Definition 1.4.11 ((Weighted) Multigraph). A multigraph is a tuple G = (V, E) where V is a finite set
and E = (E,m) is a multiset of ordered pairs of nodes, that is, with each edge (u, v) ∈ E is associated
its cardinality m

(
(u, v)

)
∈ {1, 2, 3, . . .} (the number of link types between nodes u and v). We call the

multigraph G weighted if with each of the m
(
(u, v)

)
edge types of edge (u, v) is associated a ‘weight’

wkuv, for k = 1, . . . ,m
(
(u, v)

)
.

Now, the operator W ◦ F of opinion updating process (1.3.2) can be thought of as representing a
weighted multigraph G = (V, E), where V = [n] = {1, . . . , n} is the set of agent nodes; E = (E,m),
where E denotes the social neighborhoods of agents (who is connected with whom), m

(
(u, v)

)
= 2 for all

(u, v) ∈ E and w1
uv = Wuv and w2

uv = Fuv. We let (u, v) ∈ E if and only if Wuv > 0. For an illustration,

see Figure 1.3, where W =


0 1 0 0
0 0 1 0

1/2 0 0 1/2
0 0 0 1

 and F =


F F F F
F F F F
F F F D
F F F F

.

In the continuous DeGroot model, that is, when F is the n×n matrix of identity functions, as is well
known, the concepts of graphs are useful when discussing the convergence of operators W ◦F. Namely,
in this case, updating process (1.3.3) corresponds to a power updating process with a nonnegative matrix
W ◦ F = W (each entry is nonnegative). This situation has been extensively analyzed by the German
mathematicians Oskar Perron (1880-1975) and Georg Frobenius (1849-1917) around the turn of the 19th
century, and also later in the field of Markov chain theory. Although the main results are well-known

27Weights may typically be real numbers but, initially, we more generally allow them to be arbitrary mathematical
objects.
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Figure 1.3: Multigraph as a representation of an operator W◦F. Dashed blue links denote weights Wuv;
green and red links denote following and deviating, respectively.

and have, e.g., been summarized both in the mathematics literature as well as in economics contexts
(prominently, e.g., in Golub and Jackson, 2010), we very briefly indicate some of them here as well, both
in order to introduce useful terminology and to sketch some basic insights about results on the standard
DeGroot model. To restate the results, we first need to define a few properties of networks, which we
cite from Golub and Jackson (2010).

Definition 1.4.12. A walk in a network G = (V,E) is a sequence of nodes i1, i2, . . . , iK , not necessarily
distinct, such that (ik, ik+1) ∈ E for all k ∈ {1, . . . ,K − 1}.

A path is a walk consisting of distinct nodes.
A cycle is a walk i1, . . . , iK such that i1 = iK . The length of cylce i1, . . . , iK is defined to be K − 1.

A cycle is called simple if the only node appearing twice is i1 = iK .

Definition 1.4.13. The graph G = (V,E) is said to be strongly connected if there is a path in G from
any node to any other node.

Definition 1.4.14. The graph G = (V,E) is said to be aperiodic if the greatest common divisor of the
lengths of its simple cycles is 1. We call G periodic if it is not aperiodic.

Remark 1.4.3. We remark that we generally use the same terminology — ‘strongly connected’, ‘ape-
riodic’, etc. — whether we speak of multigraphs or ordinary graphs. In the case of multigraphs, when
using the mentioned terminology, we refer to the ordinary graphs G = (V,E) underlying the multigraphs
G = (V, E = (E,m)). Moreover, since we treat operators W ◦ F and the corresponding multigraphs as
‘isomorphic’, or, simply, identical, we may also speak of W ◦ F as ‘strongly connected’, etc.

Now, we are ready to state one of the main theorems for the DeGroot updates (1.3.3) in the non-
opposition case. We assume that W is row-stochastic.

Theorem 1.4.1. Consider the opinion updating process (1.3.3) with Fij = F for all i, j ∈ [n], where F
is the identity function. Let the multigraph corresponding to the operator W ◦ F = W — an ordinary
graph — be strongly connected and aperiodic. Then W ◦ F is convergent and induces a consensus.

Our first example is a negative illustration of Theorem 1.4.1, i.e., it illustrates that if the assumptions
of the theorem are not satisfied, then its consequences need not be satisfied as well. It is the classic
example of a periodic network where agents’ opinions oscillate.

Example 1.4.1. Let n = 2 and let W and F be the following matrices,

W =

(
0 1
1 0

)
, F =

(
F F
F F

)
,



CHAPTER 1. OPINION DYNAMICS UNDER OPPOSITION 23

where F is the identity function. The directed graph corresponding to W ◦ F is shown in Figure 1.4.
Obviously, this graph is periodic since all cycles have length 2. Moreover, with notation as in Equations
(1.3.2) and (1.3.3), we have W ◦ F = W and

Wt =



(
0 1

1 0

)
if t is odd,(

1 0

0 1

)
if t is even.

Hence, matrix W does not converge.

1 2

1.0

1.0

Figure 1.4: The graph corresponding to Example 1.4.1. Since Fij = F for all i, j ∈ [n], we draw the
graph as an ordinary graph, rather than as a multigraph.

More intricate necessary and sufficient conditions for convergence and consensus (than given in The-
orem 1.4.1) in the non-opposition setup are, for instance, presented in Golub and Jackson (2010), and
references therein. Hence, as far as strong results for the non-opposition case have already been estab-
lished, in the current work, we generally analyze the situation when W ◦F is a ‘proper’ multigraph, that
is, where Fij = D for some agents i and j, so that some agents oppose some others.

Example 1.4.2. To see, however, first, that Theorem 1.4.1 may be false in the discrete weighted
majority voter model, consider S = {A,B} and n = 3. Let agents adopt the majority opinion among
their neighbors and, in case of a tie, adopt opinion, say, B. Let W and F be the matrices

W =

 1
2 0 1

2
0 1

2
1
2

1
3

1
3

1
3

 , F =

F F F
F F F
F F F

 .

In other words, everyone follows everyone else; agent 1’s neighborhood consists of agents 1 and 3, each
of whom he weighs equally; and so on. Clearly, W ◦ F = W and the graph corresponding to matrix
W is strongly connected and aperiodic so that the assumptions of Theorem 1.4.1 are satisfied. If agents
start with initial opinions, say,

(
A,A,B

)ᵀ
, then the sequence of opinion vectors generated by updating

process (1.3.2) reads as:AA
B

 7→W◦F

BB
A

 7→W◦F

BB
B

 7→W◦F

BB
B

 7→W◦F · · ·

which is in accordance with Theorem 1.4.1. If, in contrast, agents start with initial opinions, say,(
A,B,A

)ᵀ
, then the sequence of opinion vectors generated by updating process (1.3.2) reads as:AB

A

 7→W◦F

AB
A

 7→W◦F · · ·

which, consequently, does not lead to a consensus.

In the next sections, we discuss the discrete model in more depth. Now, we briefly sketch some more
aspects, including examples, relating to the continuous DeGroot model where agents update by taking
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weighted arithmetic averages of other agents’ previous opinion signals. In this context, we first note
that important fixed-point theorems from mathematics and economics allow us to make statements with
regard to the behavior of opinion updating process (1.3.3) in the continuous case. These results may be
applied in case operator W ◦ F satisfies certain conditions, as we outline.

Definition 1.4.15. Let (Y, ‖·‖) be a metric space. A function f : Y → Y is called a contraction mapping
on Y if there exists γ ∈ [0, 1) such that

‖f(x)− f(y)‖ ≤ γ ‖x− y‖ ,

for all x, y ∈ Y .

Theorem 1.4.2 (Banach fixed point theorem). Let (Y, ‖·‖) be a non-empty complete metric space and
f : Y → Y a contraction mapping on Y . Then f has a unique fixed-point x∗ in Y . Furthermore, x∗ can
be found as the limit of the sequence

(
x(t)

)
t∈N, defined via x(t) = f t(x0), for any x0 ∈ Y .

The beauty of Theorem 1.4.2 in our context is that it tells us that opinion update process (W◦F)tb(0)
converges, when W ◦ F is a contraction mapping, to the unique fixed point of W ◦ F, that is, to the
unique Nash equilibrium of the coordination games outlined in Section 1.3. Note, however, that limiting
opinions are in this case independent of initial opinions, as the theorem tells.

Interestingly, in case W ◦ F is an affine-linear map, whether or not W ◦ F is a contraction mapping
can be fully determined via the well-known notion of eigenvalues, which we introduce now.

Definition 1.4.16. Let A ∈ Rn×n be an n×n matrix. An eigenvalue of A is any value λ ∈ C such that

Ax = λx

for some non-zero vector x ∈ Rn. The set of distinct eigenvalues of matrix A is called its spectrum and
denoted by σ(A). By ρ(A), we denote the spectral radius of A, the largest absolute value of all the
eigenvalues of A,

ρ(A) = max{
∣∣λ∣∣ |λ ∈ σ(A)}.

Then, the following holds in case W ◦ F allows a representation as an affine-linear operator, that is,
for all x ∈ Sn,

(W ◦ F)x = Ax + d,

where A is an n× n matrix and d is an n-vector.

Theorem 1.4.3. If W ◦F is affine-linear of the form (W ◦F)x = Ax + d, then W ◦F is a contraction
mapping if and only if ρ(A) < 1.

Proof. See, e.g., http://web.mit.edu/dimitrib/www/Appendixes Abstract DP.pdf.

Remark 1.4.4. If W ◦ F is affine-linear of the form (W ◦ F)x = Ax + d, then we call (A,d) the
(affine-linear) representation of W ◦ F.

To apply Theorem 1.4.3 to our setup, consider the following example.

Example 1.4.3. Let n = 2, S = [0, 1] and let

W =

(
a b
c d

)
, F =

(
F D
F F

)
,

where D is probabilistic inversion, D(x) = 1 − x for all x ∈ S, and where a + b = c + d = 1. We note
that, in this situation, W ◦ F can be written in the following form

(W ◦ F)x =

(
a −b
c d

)
︸ ︷︷ ︸

=:A

x +

(
b
0

)
,
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as the reader can easily verify. For instance, for a = d = 2
3 , b = c = 1

3 , the two eigenvalues of matrix

A are 2
3 ±

1
3 i, both of which have absolute value

√
5
9 < 1. Thus, W ◦ F is a contraction mapping and

opinion updating process (1.3.3) accordingly converges to the unique fixed-point of W◦F, by the Banach
fixed-point theorem, Theorem 1.4.2. Clearly, b = ( 1

2 ,
1
2 )ᵀ is a fixed-point of W◦F and, by our reasoning,

it is thus the unique fixed-point to which opinions converge.

Example 1.4.4. Taking the same example as Example 1.4.3, except for S and the deviation function,
which we now specify as S = [−1, 1] and D(x) = −x, we find that b = (0, 0)ᵀ is the unique fixed-point
of W ◦ F, in this situation, to which opinions converge. Opinion dynamics b(t) = (W ◦ F)tb(0), for
t = 0, . . . , 50, are sketched in Figure 1.5 for two different initial opinions b(0). We generally find that
agent 1’s opinions oppose agent 2’s opinions in that they tend toward another direction of the opinion
space, but that opposition becomes weaker as agent 2’s opinions become more ‘neutral’ (which is the
essence of what ‘soft opposition’ means).

Example 1.4.5. Now, we consider again the same example as Example 1.4.3, except for S and D,
which we specify as S = [−1, 1] and D is hard opposition on S; conventionally, we let D(0) = 1. Opinion
dynamics are sketched in Figure 1.5. Rather than convergence (to consensus) as in Examples 1.4.3 and
1.4.4, we now find fluctuating and periodic opinion dynamics. We also find a phase shift in the opinion
trajectories of both agents: whenever agent 2’s opinions, which ‘mimic’ agent 1’s opinion values, increase
(in the opinion space S), agent 1’s opinions decrease, and vice versa.
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Figure 1.5: Opinion dynamics b(t) for Examples 1.4.4 and 1.4.5 with a = d = 2
3 , b = c = 1

3 for W as in
Example 1.4.3. Top: Example 1.4.4 with b(0) = (1/2, 1/2)ᵀ and b(0) = (1,−1)ᵀ, respectively. Bottom:
Example 1.4.5 with b(0) = (1/2, 1/2)ᵀ and b(0) = (1,−1)ᵀ, respectively.
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Example 1.4.6. As our final example, let W be arbitrary row-stochastic and let F be such that Fij = D
for all i, j ∈ [n] (‘everyone opposes everyone else’). Let D(x) = −x be soft opposition on S = [−β, β].
Then (A,d) = (−W,0) such that

At =

{
W if t is even,

−W if t is odd.

Consequently, (W ◦ F)tb(0) = Atb(0) oscillates as long as Wtb(0) converges to a non-zero limit point,
which typically holds, e.g., when b(0) 6= 0 and W is strongly connected and aperiodic.

The same result holds true when D is hard opposition and agents, e.g., start with a consensus other
than a fixed-point of D, no matter the structure of row-stochastic W.

As Theorem 1.4.3 states, if W ◦ F is affine-linear with representation (A,d), the spectral radius of
matrix A is of crucial importance for determining whether opinions converge or not, in our setup. When
d = 0 (W◦F is linear), a more general result than Theorem 1.4.3 on convergence of the operator W◦F,
which also includes the situation when ρ(A) = 1, is the following.

Theorem 1.4.4 (Meyer, 2000, p.630). For A ∈ Rn×n, limt→∞At exists if and only if

ρ(A) < 1, or else,

ρ(A) = 1 and λ = 1 is the only eigenvalue on the unit circle, and λ = 1 is semisimple,

where an eigenvalue is called semisimple if its algebraic multiplicity equals its geometric multiplicity.
The algebraic multiplicity of an eigenvalue λ is the number of times it is repeated as a root of the
characteristic polynomial χ(λ) = det (A− λIn), where In is the n × n identity matrix. The geometric
multiplicity is the number of linearly independent eigenvectors associated with λ.

The below two results, the latter of which is known as Schur’s inequality, bound the spectral radius
of a matrix A in terms of matrix p-norms, as we define now, and in terms of its entries.

Definition 1.4.17. The p-norm, for p ∈ R ∪ {∞}, p ≥ 1, of a matrix A is defined as

‖A‖p = max
x6=0∈Rn

‖Ax‖p
‖x‖p

,

where ‖x‖p =
(∑n

i=1

∣∣xi∣∣p)1/p for a vector x ∈ Rn. As special cases, ‖A‖1 is the maximum absolute
column sum of A and ‖A‖∞ is the maximum absolute row sum of A.

Theorem 1.4.5. It holds that

ρ(A) ≤ ‖A‖p

for any p ≥ 1. Furthermore, it holds that

n∑
i=1

∣∣λi∣∣2 ≤ n∑
i,j

∣∣Aij∣∣2,
where λ1, . . . , λn are the (not necessarily distinct) eigenvalues of matrix A.

1.5 The discrete majority voting DeGroot model

In a sense, the discrete majority voting DeGroot process is much harder to analyze than its continuous
counterpart since the opinion update operator poses more problems here: in the continuous case, if F is
linear, then W ◦F is a linear operator and, in any case, W ◦F represents a continuous operator as long
as the functions in F are continuous. Thus, all in all, we content ourselves in the following with deriving
results on fixed-points of the operator W ◦F; as mentioned, these fixed-points constitute Nash equilibria
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of the coordination games outlined as justifications of the DeGroot learning process. Throughout, we
assume that W is row-stochastic and that the opinion space S = {A1, A2, . . .} contains at least two
elements. Moreover, we need the following assumption in order for operator W ◦F to be well-defined in
the discrete case, namely, the existence of tie-breaking elements that discriminate between any choices
of opinions.

Assumption 1.5.1 (Tie-breaking element). Let M ⊆ S be an arbitrary non-empty subset of the opinion
space. We assume that there exists b ∈M such that, in case of a (weighted) tie between the elements of
M , agents adopt opinion b as an opinion update rather than any of the other elements in M .

Example 1.5.1. If S is ordered by a ordering relation <, a natural notion of a tie-breaking element
would be the largest (or smallest) element of any M ⊆ S.

Influential groups, decisive groups and persistent disagreement

We start this discussion with three very simple examples, Examples 1.5.2, 1.5.3, and 1.5.4, before consid-
ering results of a general nature in Proposition 1.5.1 and thereafter. In Example 1.4.2, we have already
seen that — in the situation when F consists of identity functions exclusively — strong connectedness
and aperiodicity of the networks W are not sufficient conditions for W to induce a consensus, unlike in
the continuous case. We now demonstrate by way of illustration that if W is periodic, then, like in the
continuous case, W may not converge.

Example 1.5.2. Let W and F be the matrices,

W =

0 1
2

1
2

1 0 0
1 0 0

 , F =

F F F
F F F
F F F

 .

Network W is periodic, as can easily be verified, since all simple cycles have length 2. Then:AB
B

 7→W◦F

BA
A

 7→W◦F

AB
B

 7→W◦F · · · ,

where A,B ∈ S. In other words, whenever agent 1, on the one hand, and agents 2 and 3, on the other
hand, disagree initially, disagreement will perpetuate forever, under the social network W ◦ F. As in
the continuous case, this is due to the cyclical information structure in network W ◦F whereby agent 1
derives her information from agents 2 and 3, who, in turn, listen to agent 1.

Now, we consider the opposition case when Fij = D for some agents i, j ∈ [n] and some deviation
function D. Interestingly, we notice that opposition may play a similar role as periodicity in the above
example and, thus, may prevent convergence. We discuss this example below, too, when we talk about
anti-opposition bipartite networks.

Example 1.5.3. Let W be any strictly positive matrix — that is, each entry is positive — and let F
be the matrix,

F =

D F F
F D D
F D D

 ,

where D is not the identity function. Note that matrix F has a very similar structure as matrix W in
the previous example. In fact, if we replace zero entries in W from Example 1.5.2 by ‘D’ and positive
entries by ‘F ’, W is transformed into F. Now, let A,B ∈ S be opposing viewpoints, that is, D(A) = B
and D(B) = A. Then, as the reader may verify,AB

B

 7→W◦F

BA
A

 7→W◦F

AB
B

 7→W◦F · · · ,
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precisely as in Example 1.5.2. This shows that, under opposition, W ◦ F may not even converge, even
when W is strongly connected and aperiodic, as long as F satisfies a certain ‘aperiodicity’ condition (as
well as D).

Next, we consider the example where opposition is ‘marginal’ in that only a few agents deviate from
the opinion signals of a few others.

Example 1.5.4. Let n = 3 and let F be the matrix,

F =

F D F
F F F
F F F

 , (1.5.1)

where D is an arbitrary deviation function, and let W be uniform, for example,

W =
1

3

1 1 1
1 1 1
1 1 1

 ,

so that everyone weighs everyone else equally. Then, any consensus opinion profile (A,A,A)ᵀ, with
A ∈ S, is a fixed-point of W ◦ F, as in the non-opposition case. Hence, in the discrete model, ‘a bit of
opposition’ may not necessarily be an obstacle to consensus formation, something that is not true (in
the same manner) for the continuous setup, as we discuss below. Still, even in this model, opposition
does matter for the given example; e.g., for D(A) = B and D(B) = A, we have (A,A,B)ᵀ 7→W◦F
(B,A,A)ᵀ 7→W◦F (B,A,A)ᵀ, while in the non-opposition analogue of W ◦F in which F12 = F , we have
(A,A,B)ᵀ 7→ (A,A,A)ᵀ 7→ (A,A,A)ᵀ.

The last example raises two questions. Firstly, may opposition have no impact at all in that results
are always the same as in the non-opposition scenario, for specific networks W ◦ F? Secondly, in the
case of opposition, what are requirements on the weight structure W that prevent consensus formation?

The latter question has a simple solution. It requires, for example, the following result which states
that the set of consensus fixed of points of W◦F coincides with the set of neutral opinions of D provided
that some agent assigns ‘too large weight mass’ to agents he opposes. We first define the concept of
consensus vectors.

Definition 1.5.1. Let C be the set of consensus opinion vectors in Sn, i.e., C = {(a1, . . . , an)ᵀ ∈ Sn | a1 =
. . . = an}.

Proposition 1.5.1. Let W ◦ F be an arbitrary operator. Then, for any c ∈ S,

c ∈ Fix(D) =⇒ (c, . . . , c)ᵀ ∈ Fix(W ◦ F).

Moreover, if Wi,Oi >
1
2 for some i ∈ [n], then, for all c ∈ S,

c /∈ Fix(D) =⇒ (c, . . . , c)ᵀ /∈ Fix(W ◦ F).

In other words, if Wi,Oi >
1
2 for some i ∈ [n], then

Fix(D) = P1[Fix(W ◦ F) ∩ C],

where P1 projects consensus vectors (c, . . . , c)ᵀ ∈ C to c ∈ S.

Proof. Let c = (c, . . . , c)ᵀ.
If c = D(c), then, clearly, by definition of W ◦ F, (W ◦ F)c = c.
Conversely, let i ∈ [n] with Wi,Oi >

1
2 and let D(c) 6= c. Then, for agent i, the weight of opinion

D(c) is larger than 1/2. Thus, her updated opinion will be D(c) rather than c, after applying operator
W ◦ F. Thus, (W ◦ F)c 6= c.
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Remark 1.5.1. For an agent i, we call a group of agents N that satisfies the requirement Wi,N > 1
2 as

in Proposition 1.5.1 decisive for agent i as it may decide i’s opinion provided that agents in N agree.

As a simple Corollary to Proposition 1.5.1, we find that the possible consensus limiting opinions of
W ◦ F, denoted by,

Lim(W ◦ F) ∩ C = {b ∈ Sn |b = lim
t→∞

(W ◦ F)tb(0), for some b(0) ∈ Sn} ∩ {(a1, . . . , an)ᵀ ∈ Sn | a1 = . . . = an},

are given by the set of fixed points of D as long as at least one agent has ‘too much distrust’. In other
words, under opposition, agents can only converge to consensus vectors in which the consensus value
is a neutral opinion if some agent’s outgroup is decisive for him. If, in addition, D is radical, opinion
dynamics (1.3.3), in the discrete weighted majority setup, cannot induce a consensus. Hence, under these
conditions, disagreement will be persistent. Formally:

Corollary 1.5.1. Let W ◦ F be such that for some agent i ∈ [n] the group of agents he opposes is
decisive for him. Then,

P1[Lim(W ◦ F) ∩ C] = Fix(D).

In particular, if D is radical, Fix(D) = ∅ and (1.3.3) never converges to a consensus.

Proof. Limits of W ◦ F are, in the discrete case, fixed-points of W ◦ F by Remark 1.4.2, that is,
Lim(W ◦ F) = Fix(W ◦ F). Accordingly, if Wi,Oi >

1
2 for some i ∈ [n], then, by Proposition 1.5.1,

Fix(D) = P1[Fix(W ◦ F) ∩ C] = P1[Lim(W ◦ F) ∩ C].

Example 1.5.5. The conditions Wi,Oi >
1
2 and fixed-point freeness of D might appear overly strong.

Assuming a probabilistic analysis, for the moment, we find that fixed-point freeness is more likely the
smaller the size of the opinion space, m = |S|. For m = 2, we have 1 fixed-point free deviation function
D on {A,B}, among m!− 1 = 1 candidates (that is, all possible specifications of D are fixed-point free).
For m = 3, there are 2 fixed-point free functions, among m! − 1 = 5 candidates, which is 40%. As m
becomes large, this fraction approximates 1/3, as is well-known.28 Now, assuming D is radical, we want
to estimate the probability that Wi,Oi >

1
2 for some i ∈ [n]. For simplicity, let us assume that Wij = 1

n
for all i, j ∈ [n], and that each agent i ∈ [n] randomly opposes other agents j ∈ [n] with probability
p ∈ [0, 1], that is, P [Fij = D] = p; we assume independence across both i and j. Then, the probability
that Wi,Oi ≤ 1

2 equals the probability that X ≤ n
2 where X is binomially distributed with parameters n

(n trials) and p (success probability, that i opposes j, is p). Let P (n; p) denote this probability, which
equals

∑
k≤n2

(
n
k

)
pk(1 − p)n−k. Then, the probability that all agents have Wi,Oi ≤ 1

2 is just P (n; p)n.

Consequently, the probability that there is an agent with Wi,Oi >
1
2 is 1 − P (n; p)n. In Figure, 1.6 we

plot this likelihood for p = 0.30, p = 0.35, p = 0.40, p = 0.45 and p = 0.50. Interestingly, there appears
to be a bifurcation value — p0 = 0.50 — such that if p ≥ p0, the probability that at least one agent has
Wi,Oi >

1
2 goes to 1 as n→∞, while if p < p0 the same probability converges to zero as n→∞. Hence,

if p ≥ p0, for example, the probability that at least one agent’s outgroup is decisive for him converges to
1 as n→∞. Thus, under fixed-point freeness of D, disagreement among such agents will obtain almost
surely as n→∞.

A simple other condition that prevents the operator W◦F from inducing a consensus is, for example,
the following. This condition is weaker than the previous because it says that disagreement obtains for
some initial opinion vectors, while fixed-point freeness of D and decisiveness of outgroups, as discussed
above, imply that disagreement obtains for all initial opinion vectors.

Proposition 1.5.2. If all agents oppose a certain agent, j′, and otherwise Fij = F for all i, j ∈ [n]
with j 6= j′, then W ◦ F does not induce a consensus (that is, there exists b(0) ∈ Sn such that
limt→∞(W ◦ F)tb(0) is not a consensus).

28See, e.g., http://www.math.umn.edu/˜garrett/crypto/Overheads/06 perms otp.pdf
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Figure 1.6: Probability 1−P (n; p)n that at least one agent i ∈ [n] has Wi,Oi >
1
2 as a function of n and

for five values of p. Description in text, Example 1.5.5.

Proof. Since D is not the identity, there exists c such that c 6= D(c). Then a fixed-point of W ◦ F is
given by b(0) = (D(c), . . . , D(c), c︸︷︷︸

j′

, D(c), . . . , D(c))ᵀ.

Remark 1.5.2. The last proposition also holds under the weaker assumption Wi,Fi + Wij′ >
1
2 for all

i = 1, . . . , n.

Now, to answer the first question — whether opposition may have no effect at all, in our current setup
— let FD→F denote the matrix with all D’s replaced by F ’s, i.e., the network links F with opposition
‘inverted’ to following. Then, it is easy to see that, in fact, W ◦F and W ◦FD→F may entail the exactly
same limiting opinion results under opinion updating process (1.3.3), in the discrete case.

Example 1.5.6. Let n = 4, for example, and consider the operator W ◦ F,

W =


3
4

1
12

1
12

1
12

? ? ? ?
? ? ? ?
? ? ? ?

 , F =


F D D D
F F F F
F F F F
F F F F

 ,

where the weight structure of agents 2 to 4 may be arbitrarily specified; important is agent 1, who opposes
agents 2 to 4, while the remaining agents follow all agents j = 1, 2, 3, 4. Then, no matter the opinion
profile b ∈ Sn, (W ◦ F)b = (W ◦FD→F )b, which is obvious, since agent 1 assigns so much weight mass
to himself (and follows himself) that he always adopts his own current opinion signal, no matter the
opinion signals of agents 2 to 4. Consequently, limt→∞(W ◦ F)tb(0) = limt→∞(W ◦FD→F )tb(0) for all
b(0) ∈ Sn.

Example 1.5.7. In the last example, agent i = 1 had assigned herself more than 50% weight mass (and
followed herself) such that it is clear that her own current opinion always determines her next period
opinion. A slightly more subtle example is the following, where none of the agents that i follows has
more than 50% weight mass.

W =


40
100

30
100

21
100

9
100

? ? ? ?
? ? ? ?
? ? ? ?

 , F =


F F F D
F F F F
F F F F
F F F F

 .

Here, whenever two of the three agents 1, 2, 3 agree, agent 1 adopts their opinion in the next period,
irrespective of agent 4’s opinion. If all three agents disagree, agent 1 adopts her own current opinion in the
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next period, irrespective of agent 4’s opinion. Hence, limt→∞(W ◦ F)tb(0) = limt→∞(W ◦FD→F )tb(0)
for all b(0) ∈ Sn.

There are, however, conditions on W that ensure that opposition ‘matters’. One such condition is
the following, whose idea is similar in spirit to that of Proposition 1.5.1, namely, it refers to ‘too large
weight mass’ assigned to opposed agents. Before we state the proposition, we define the concept of an
influential group.

Definition 1.5.2. Let an agent i ∈ [n] be fixed. We call a group N ⊆ [n] influential for agent i if
there exist two sets of agents N1 ⊆ [n] and N2 ⊆ [n] such that (N ,N1,N2) is a partition of [n] (pairwise
disjoint and whose union is [n]) and

Wi,N1
+Wi,N >

1

2
and Wi,N2

+Wi,N >
1

2
. (1.5.2)

Remark 1.5.3. An influential group N for agent i is precisely what its name suggests: it may influence
agent i’s opinion. For instance, if agents in N1 hold opinion A and agents in N2 hold opinion B, then
agents in N may ‘turn the scales’.

Remark 1.5.4. If N is decisive for agent i, then it is influential for i.

Proposition 1.5.3. For some agent i ∈ [n], let the group Oi of agents he opposes be influential for i,
then it holds that

(W ◦ F)b 6= (W ◦ FD→F )b

for at least one opinion vector b ∈ Sn.

Proof. Since Oi, the agents i opposes, is an influential group, there is a partition (Oi,N1,N2) such that
(1.5.2) holds; of course, i follows agents in N1 and N2. Let S = {A,B, . . .} consist of at least two
elements and let, without loss of generality, D(B) = A. Let b be an opinion vector such that agents in
N1 hold opinion A, agents in N2 hold opinion B and agents in Oi hold opinion B. Then(

(W ◦ F)b
)
i

= A,

since Wi,N1
+Wi,Oi >

1
2 and D(B) = A, and(

(W ◦ FD→F )b
)
i

= B,

since Wi,N2
+Wi,Oi >

1
2 .

Example 1.5.8. Many examples of W and F that satisfy the assumptions of Proposition 1.5.3 come to
mind. One might be, for instance,

W =


1
4

1
3

1
4

1
6

? ? ? ?
? ? ? ?
? ? ? ?

 , F =


F D F F
? ? ? ?
? ? ? ?
? ? ? ?

 .

Then, one partition as required by Proposition 1.5.3 is N1 = {1}, N2 = {3, 4}, Oi = {2} with Wi,N1
= 1

4 ,
Wi,N2

= 5
12 , and Wi,Oi = 1

3 . Hence,

Wi,N1 +Wi,Oi =
1

4
+

1

3
=

7

12
>

1

2
, and Wi,N2 +Wi,Oi =

5

12
+

1

3
=

3

4
>

1

2

so that, indeed, Oi is influential for i = 1.

If we impose slightly more structure on D, we may give slightly more general conditions under which
opposition ‘matters’.
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Proposition 1.5.4. Let there exist a non-fixed point B of D such that B is the tie-breaking element of
{B,D(B)}. Moreover, for some agent i ∈ [n], let the set Oi of agents he opposes be influential′ in the
following manner. Rather than requirement (1.5.2), we assume the weaker form

Wi,N1
+Wi,Oi >

1

2
and Wi,N2

+Wi,Oi ≥
1

2
. (1.5.3)

Then, it holds that

(W ◦ F)b 6= (W ◦ FD→F )b

for at least one opinion vector b ∈ Sn.

Proof. As in the proof of Proposition 1.5.1, let b such that agents in N1, N2, and Oi hold opinions
A = D(B), B, and B, respectively.

We note that both hard opposition and soft opposition as specified in Section 1.3, and which assume
an order < on S, satisfy the condition on D specified in the last proposition under the ‘natural notion’ of
tie-breaking element, cf. Example 1.5.1, as largest (or smallest) element of M ⊆ S. For instance, choose
B = maxS, whence, since D(B) = minS, B is the tie-breaking element of {B,D(B)}. Moreover, we
note that weight requirement (1.5.3) in Proposition 1.5.4 is always satisfied in the case of uniform weights
W, which reproduces the ordinary (‘unweighted’) majority updating setup, when some agent i opposes
at least one agent j. In other words, in the ordinary (‘unweighted’) majority updating setup, opposition
always has an effect as long as D is, e.g., soft or hard opposition. This is what our next example shows
more formally.

Example 1.5.9. Let n ∈ N and let W ◦ F be such that there exists an agent i with Wij = 1
n for all

agents j = 1, . . . , n and let |Oi| ≥ 1. We show that Oi is influential′ for i in the sense of requirement
(1.5.3). To see this, let Fi be the set of agents that agent i follows. If Fi has even cardinality, let N1 and
N2 be an arbitrary partition of Fi with |N1| = |N2|. Then, clearly, Wi,Nk + Wi,Oi >

1
2 for k = 1, 2. If

Fi has odd size, let N1 and N2 be an arbitrary partition of Fi such that |N1| = |N2|+ 1. Then, clearly,
Wi,N1 +Wi,Oi >

1
2 and Wi,N2 +Wi,Oi ≥ 1

2 . Hence, Oi is influential′ for i.
To be more precise on the example, let, e.g.,

W =


1
5

1
5

1
5

1
5

1
5

? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?

 , F =


F F D D F
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?

 .

Hence, for i = 1, choose N1 = {1, 2}, for example, and N2 = {5}, and Oi, the set of agent i opposes,
is Oi = {3, 4}. Clearly, Wi,N1

+ Wi,Oi = 2
5 + 2

5 > 1
2 and Wi,N2

+ Wi,Oi = 1
5 + 2

5 > 1
2 so that Oi is

indeed influential′ for i. Moreover, to have, in addition, the assumptions on D in Proposition 1.5.4 be
satisfied, let, e.g., S = {A,B,C} with D(C) = A, D(B) = B, and D(A) = C, where A < B < C (note
that D is soft opposition on S) and larger opinions are tie-breakers; then, C, a non-fixed point of D, is
the tie-breaking element of {C,D(C) = A}. Hence, all assumptions of Proposition 1.5.4 are satisfied,
and, accordingly, also its consequences. By the proof of the proposition, b = (A,A,C,C,C)ᵀ satisfies
(W ◦ F)b 6= (W ◦ FD→F )b. In fact, (

(W ◦ F)b
)
i

= A,

while (
(W ◦ FD→F )b

)
i

= C.

Remark 1.5.5. We may summarize Propositions 1.5.1 to 1.5.4 as follows. First, we find that, in the
discrete majority voting model, opposition may have no effect at all in that the same outcomes can obtain
as in the setting without opposition (Examples 1.5.6 and 1.5.7). Intuitively and from the examples, we
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feel that this must be related to the weight mass agents assign to opposed agents. Propositions 1.5.3
and 1.5.4 then show that opposition begins to matter once a single agent assigns ‘large enough’ weight
mass Wi,Oi to opposed agents, i.e., his outgroup is influential for him. Weight mass requirements are not
strong: they are satisfied for the ordinary (‘unweighted’) majority opinion update model, for example
(see Example 1.5.9). Finally, Proposition 1.5.1 and Corollary 1.5.1 indicate that if Wi,Oi exceeds a
critical value — 1

2 in this setup; the group of agents i opposes becomes decisive for him — opposition
becomes ‘poisonous’ in that it precludes consensus formation in the DeGroot learning model as long
as, in addition, deviation function D is ‘radical’ in that it has no fixed points. In other words, if D is
radical and if a single agent’s outgroup is decisive for him, disagreement among agents (within a period
or between periods) is the prediction of our discrete DeGrootian opinion dynamics model, no matter
the initial opinions of agents. Fixed-point freeness may not be too surprising an occurrence, however,
as the example of the binary model, with S = {A,B}, suggests. Here, the only legitimate specification
of D is fixed-point free. Moreover, even if D is not radical, Proposition 1.5.1 shows that, in the case
of opposition, agents can only attain neutral consensus opinions as long as a single agent has sufficient
‘distrust’. If Fix(D) is small, as we would typically expect, most consensus opinions can, accordingly,
never be attained.

Polarization

We now investigate polarization as an outcome of our opinion updating dynamics. Note that, in real
societies, polarization on many agendas is frequently observed such as whether the Christian churches,
or the law, should allow condoms or gay marriages. In fact, as we have discussed, polarizing viewpoints
may occur, prominently, in the political arena and in the situation of ‘countercultural’ subsocieties, with
respect to the viewpoints held by the ‘mainstream’ culture. We first define the concept formally.

Definition 1.5.3 ((Functional) Polarization). We call an opinion vector p ∈ Sn a polarization if p
consists of two distinct elements a, b ∈ S exclusively.

We call an opinion vector p ∈ Sn a functional polarization if p is a polarization and a and b are
opposing viewpoints.

The concept of functional polarization, which depends on the definition of deviation function D,
captures the notion of ‘opposing viewpoints’ expressed in a polarization vector p, while an ‘ordinary’
polarization vector may consist of disagreeing viewpoints solely, that stand in no relationship to each
other. Next, we define network structures that are sufficient for inducing polarization opinion vectors.

Definition 1.5.4 (Opposition bipartite operator W ◦ F). We call the operator W ◦ F on n agents
opposition bipartite if there exists a partition (N1,N2) of the set of agents [n] into two disjoint non-
empty subsets — [n] = N1 ∪N2, with N1 ∩N2 = ∅, Ni 6= ∅, for i = 1, 2 — such that agents in Ni follow
each other, for i = 1, 2, while for all agents i0 ∈ Ni, i1 ∈ N−i, for i = 1, 2, it holds that i0 deviates from
i1. More precisely, we require

∀ i0, i1 ∈ Ni
(
Wi0i1 > 0 =⇒ Fi0i1 = F

)
, for i = 1, 2,

∀ i0 ∈ Ni, i1 ∈ N−i
(
Wi0i1 > 0 =⇒ Fi0i1 = D

)
, for i = 1, 2.

Remark 1.5.6. What we call ‘opposition bipartite’ operator — or at least a special case of our concept
— has also been called ‘balanced signed network’ in the literature (cf. Beasley and D. Kleinberg, 2010).

Definition 1.5.5 (Anti-Opposition bipartite operator W ◦F). We call the operator W ◦F on n agents
anti-opposition bipartite if there exists a partition (N1,N2) of the set of agents [n] into two disjoint non-
empty subsets such that agents in Ni deviate from each other, for i = 1, 2, while for all agents i0 ∈ Ni,
i1 ∈ N−i, for i = 1, 2, it holds that i0 follows i1.

An example of an opposition bipartite operator is given in Example 1.5.10 below. An example of
an anti-opposition bipartite operator is given in Examples 1.5.12 below and 1.5.3 above. A schematic
illustration of both concepts is given in Figure 1.7.

We now show that opposition bipartite networks have polarization opinion vectors as fixed-points.
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Figure 1.7: Schematic illustration of the concepts of opposition bipartite (left) and anti-opposition bi-
partite operators (right). We omit network links referring to weights W for clarity and we also draw
links as undirected for the same reason. We omit links Fij where Wij = 0. Red links denote opposition,
green links following.

Proposition 1.5.5. Let W ◦ F be opposition bipartite and let a, b ∈ S be opposing viewpoints. Then,
there exists a polarization opinion vector p consisting of opinions a and b such that (W ◦ F)p = p.

Proof. Let N1 and N2 be the partition of the agent set [n] = {1, . . . , n} such that agents in Ni, i = 1, 2,
follow each other, while agents across the two sets oppose each other. Let a, b ∈ S be such that D(a) = b
and D(b) = a. Moreover, let p be such that each agent in N1 holds opinion a (or b) and each agent in N2

holds opinion b (or a). Then, for each agent i1 ∈ N1, all neighbors’ (possibly inverted) opinion signals
are a (or b) and analogously for agents i2 ∈ N2.

Example 1.5.10. Let W be arbitrary. Consider

F =


F F D D
F F D D
D D F F
D D F F

 .

Clearly, W ◦ F is opposition bipartite; for example, take N1 = {1, 2} and N2 = {3, 4}. Moreover, let
S = {“impossible”,“unlikely”,“possible”,“likely”,“certain”} as above with D as soft opposition. Then
p =

(
“unlikely”, “unlikely”, “likely”, “likely”

)ᵀ
is a polarization fixed-point of W ◦ F, amongst others.

Note that Proposition 1.5.5 would also be true under weaker conditions such as a ‘perturbed oppo-
sition bipartite operator’, as we define in the following.

Definition 1.5.6 (Perturbed opposition bipartite operator). We call the operator W ◦ F on n agents
perturbed opposition bipartite if there exists a partition (N1,N2) of the set of agents [n] into two disjoint
non-empty subsets such that for each agent i = 1, . . . , n, there exists a group of agents Ai ∪ Bi ⊆ [n],
with Ai ⊆ N1 and Bi ⊆ N2 and i follows agents in Ai and deviates from agents in Bi, such that the
group Ai ∪Bi is decisive for i, i.e., Wi,Ai∪Bi >

1
2 .

Example 1.5.11. Consider

W =
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , F =


F F D F
D F D D
D D D F
D F F F

 ,

Taking N1 = {1, 2} and N2 = {3, 4}, we see that W ◦F is perturbed opposition bipartite. For example,
for agent 1, we would, e.g., have A1 = {1, 2}, B1 = {3} with W1,A1∪B1

= 3
4 > 1

2 ; for agent 2, e.g.,
A2 = {2} and B2 = {3, 4} and W2,A2∪B2

= 3
4 > 1

2 , etc. Perturbed opposition bipartite networks also
have polarization vectors as fixed-points, as seen in this example, e.g.:

“unlikely”
“unlikely”

“likely”
“likely”

 7→W◦F


“unlikely”
“unlikely”

“likely”
“likely”

 .
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Anti-opposition bipartite networks induce oscillating, or fluctuating, opinion updates (cf. Kramer,
1971), very similar to ordinary periodic networks as discussed above.

Proposition 1.5.6. Let W ◦ F be anti-opposition bipartite and let a, b ∈ S be opposing viewpoints.
Then, there exist polarization opinion vectors p, p̄ ∈ Sn consisting of opinions a and b in a complementary
manner — pi = D(p̄i) and p̄i = D(pi) for all i = 1, . . . , n — such that (W ◦F)p = p̄ and (W ◦F)p̄ = p.

Proof. Let N1 and N2 be the partition of the agent set [n] = {1, . . . , n} such that agents in Ni, i = 1, 2,
deviate from each other, while agents across the two sets follow each other. Let a, b ∈ S be such that
D(a) = b and D(b) = a. Moreover, let p be such that each agent in N1 holds opinion a (or b) and each
agent in N2 holds opinion b (or a) and let p̄ have a complementary distribution of a’s and b’s. Then,
for each agent i1 ∈ N1, all neighbor’s (possibly inverted) opinion signals are b (or a) and analogously for
agents i2 ∈ N2.

Example 1.5.12. Let W be arbitrary. Consider

F =


D D F F
D D F F
F F D D
F F D D

 .

Clearly, W ◦ F is anti-opposition bipartite; for example, take N1 = {1, 2} and N2 = {3, 4}. For p as in
Example 1.5.10, we have

“unlikely”
“unlikely”

“likely”
“likely”

 7→W◦F


“likely”
“likely”

“unlikely”
“unlikely”

 7→W◦F


“unlikely”
“unlikely”

“likely”
“likely”

 7→W◦F . . .

Of course, we could, in addition, define a concept of ‘perturbed anti-opposition bipartite operator’
and easily see that Proposition 1.5.6 also holds under this weaker concept, but we omit the details here
because of analogy with the concept of ‘perturbed opposition bipartite operator’.

Since neither fluctating opinion updates nor polarization consitute a consensus, we have the following
simple corollary to Propositions 1.5.5 and 1.5.6.

Corollary 1.5.2. Let W ◦ F be (perturbed) opposition bipartite or anti-opposition bipartite. Then
there exist initial opinion vectors b(0) ∈ Sn such that W ◦ F does not induce a consensus for b(0). If
W ◦ F is anti-opposition bipartite, then there exist initial opinion vectors b(0) ∈ Sn such that W ◦ F
does not even converge for b(0).

We conclude with an example of how to induce more general polarization outcomes, between more
than two groups of agents, and a simulation of the discrete weighted majority opinion updating model
(1.3.3). In the latter example, rather than discussing (possible or impossible) fixed points of operators,
we simulate actual dynamics.

Example 1.5.13. We briefly discuss how to induce, in a general manner, polarizing viewpoints between
more than two groups of agents as fixed-points of the operator W ◦ F. One way to achieve such more
fragmented opinion and belief systems in society in our setup is to endow the different groups with
different deviation functions Dk : S → S, where k ranges over the groups (or agents). In essence, these
different deviation functions would represent distinct interpretations of what the opposite of a certain
opinion value a ∈ S is. For example, one group might interpret opposition in a radical manner, allowing
Dk to have no fixed-points while other groups may be more ‘tolerant’, leaving some opinion values
unchanged, even in opposition modus.29

To make a concrete example, let S = {A,B,C, . . .} and consider three different groups with distinct
deviation functions D1(x) = A, D2(x) = B, D3(x) = C for all x ∈ {A,B,C} (or even all x ∈ S). For

29A generalization is to let the deviation endomorphisms depend, not only on the agents who oppose, but also on the
opposed agents.
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instance, group 1 might always deviate to an extreme left wing opinion, at least within the set {A,B,C},
provided that it deviates from certain agents; group 2 to a moderate position in the opinion space; and
group 3 to an extreme right wing position. Let, e.g.,

W =
1

6


1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

 , F =


F F F D1 D1 D1

F F F D1 D1 D1

F F F D1 D1 D1

D2 D2 D2 F D2 D2

D3 D3 D3 D3 F F
D3 D3 D3 D3 F F

 .

We then have a partition (N1,N2,N3) of the agent set — ({1, 2, 3}, {4}, {5, 6}) in the example — such
that agents within each subset Ni follow each other and agents across the subsets deviate from each other,
applying their specific choices of deviation functions. It is easy to check that, e.g., p = (A,A,A,B,C,C)ᵀ

is a fixed-point of W ◦ F, constituting a ‘generalized’ polarization opinion vector.

1

2 3

4

5

6

Figure 1.8: Graphical illustration of Example 1.5.13. Groups have individualized deviation functions, in
different colors. We omit many links for clarity.

Example 1.5.14. To visualize the likelihood of a consensus in our current setup, we plot in Figure
1.9 the following quantities. We run a simulation where we choose weights Wij from a uniform random
distribution on (0, 1) and then normalize in order for W to be row-stochastic. We draw Fij according
to the Bernoulli distribution P [Fij = D] = p, with p ∈ [0, 1]. We let D be hard opposition on the set
S = {−α,−α + 1, . . . , 0, . . . , α − 1, α}, for α ∈ {1, 2, 3}; conventionally, we let D(0) = 0. For n agents
(n = 5 in the figure), we then iterate over all possible distributions of initial opinion profiles b(0) ∈ Sn —
there are |S|n different such profiles — and determine the fraction of profiles that result in a consensus
among the |S|n total initial opinion profiles, that is, for which it holds that limt→∞(W ◦ F)b(0) is a
consensus. In the figure, we plot this fraction as a function of p; the displayed curves are averages
over 20 simulations. We note that the probability of a consensus appears to be a decreasing function
of p, opposition likelihood, as we expect. In the case of hard opposition, at least, consensus likelihood
obviously decreases in α, the ‘size’ of S.

1.6 The continuous DeGroot model

1.6.1 The requirement
∑n

j=1 Wij = 1

At first, we consider here the condition when the importance matrix W is row-stochastic, that is,

0 ≤Wij ≤ 1, and,

n∑
j=1

Wij = 1 (1.6.1)

for all i = 1, . . . , n. As mentioned, this means that the weights that agents assign each other are
normalized to unity, which is the usual assumption in DeGroot-like models.
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Figure 1.9: Consensus probability as a function of p. We denote the discrete interval {−α,−α+1, . . . , α−
1, α} by [−α, α], for short. Description in the text.

Proposition 1.6.1. Let W ◦ F be an arbitrary operator. Then, for any c ∈ S,

c ∈ Fix(D) =⇒ (c, . . . , c)ᵀ ∈ Fix(W ◦ F).

Moreover, if Wi,Oi > 0 for some i ∈ [n], then, for all c ∈ S,

c /∈ Fix(D) =⇒ (c, . . . , c)ᵀ /∈ Fix(W ◦ F).

In other words, if Wi,Oi > 0 for some i ∈ [n], then

Fix(D) = P1[Fix(W ◦ F) ∩ C].

Proof. Let c = (c, . . . , c)ᵀ.
If c = D(c) for some c ∈ S, then clearly (W ◦F)c = c by the definition of W ◦F since for each agent

i ∈ [n], (
(W ◦ F)c

)
i

=
∑
j∈Fi

Wijc+
∑
j∈Oi

WijD(c) = c
∑
j∈[n]

Wij = c = (c)i.

Conversely, let c 6= D(c) for some c ∈ S. Let i ∈ [n] be such that Fij = D and Wij > 0 for some
j ∈ [n]. If c = (c, . . . , c)ᵀ were a fixed-point of W ◦ F, then

c =
∑
j∈Oi

WijD(c) +
∑
j∈Fi

Wijc = D(c)Wi,Oi + c(1−Wi,Oi),

which implies that

0 = Wi,Oi(D(c)− c),

which is impossible since Wi,Oi > 0 by assumption.

As a simple corollary to Proposition 1.6.1, we find that the possible consensus limiting opinions of
W ◦F are given by the set of fixed points of D when D is continuous. In other words, under opposition,
agents can only converge to consensus vectors in which the consensus value is a neutral opinion. The
corollary mimics the corresponding ‘discrete case’ corollary in the same way that Proposition 1.6.1 mimics
Proposition 1.5.1, mutatis mutandis.
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Corollary 1.6.1. Let D be continuous. Then, if Wi,Oi > 0 for some i ∈ [n],

P1[Lim(W ◦ F) ∩ C] = Fix(D).

In particular, if D is radical, Fix(D) = ∅ and (1.3.3) never converges to a consensus.

Proof. If D is continuous, limits of W ◦F are fixed-points of W ◦F by Remark 1.4.2, that is, Lim(W ◦
F) = Fix(W ◦ F). Accordingly, if Wi,Oi > 0 for some i ∈ [n], then, by Proposition 1.6.1, Fix(D) =
P1[Fix(W ◦ F) ∩ C] = P1[Lim(W ◦ F) ∩ C].

Remark 1.6.1. As in the discrete case, the proposition may imply long-run disagreement, for all initial
opinions, for instance, when D is fixed point free.

By Brouwer’s fixed point theorem, however, stated in the appendix, D always has a fixed point as long
as S is convex (our standard assumption) and compact and D is continuous. Hence, in this situation,
updating process (1.3.3) always converges to at least one consensus opinion vector, given appropriate
initial opinions, even under opposition. But also note, however, that one of our prime exemplars of a
deviation function, hard opposition, is not a continuous function.

Remark 1.6.2. We mention the following generalization of Corollary 1.6.1 in case agents have individ-
ualized deviation functions Di : S → S as in Example 1.5.14. In this situation, if each Di is continuous
and if Wi,Oi > 0 for all i in a subset A ⊆ [n], then

P1[Lim(W ◦ F) ∩ C] =
⋂
i∈A

Fix(Di),

which implies that P1[Lim(W ◦ F) ∩ C] = ∅ as soon as two Di, Di′ , have disjoint sets of fixed-points.
Of course, this generalization already applies to Proposition 1.6.1 such that P1[Fix(W ◦ F) ∩ C] =⋂
i∈A Fix(Di) whenever Wi,Oi > 0 for all i in A.

We now want to study actual limiting behavior of opinion updating process (1.3.3), that is, we
ask: what does (1.3.3) converge to (if it converges), rather than what can it possibly converge to (if at
all)? An analytically (more or less) tractable situation arises when S = [α, β] and D is soft opposition,
D(x) = α+β−x for all x ∈ S. In this case, D is affine-linear and, as may be clear and as we also show in
the proof of Proposition 1.6.2 below, then also W ◦F is affine-linear, allowing the representation, for all
x ∈ Sn, (W ◦F)x = Ax + d, for some matrix A ∈ Rn×n and some vector d ∈ Rn. As we have indicated
in Section 1.4, and, in particular, in Theorem 1.4.3, in this situation, if matrix A has spectral radius
smaller than 1, then W ◦ F is a contraction mapping and, thus, by the Banach fixed point theorem,
(W ◦F)tb(0) converges to the unique fixed point of W ◦F. Now, by Proposition 1.6.1, the fixed points
of W ◦ F comprise the fixed points of D, that is, the neutral opinions. As we can easily verify, soft
opposition D has precisely one fixed-point, namely, c = α+β

2 , from which we consequently conclude that,
in the situation of the Banach fixed point theorem, W ◦F induces the consenus (c, . . . , c)ᵀ, for all initial
opinion vectors b(0) ∈ Sn. This is our next proposition.

Proposition 1.6.2. Let S = [α, β] and let D be soft opposition. Then, W◦F is an affine-linear operator
of the form Ax + d. If ρ(A) < 1, then W ◦ F induces the unique consensus α+β

2 , for all initial opinion
profiles b(0) ∈ Sn.

Proof. The proposition is clear, except maybe for the representation of W◦F as an affine-linear operator.
For agent i = 1, . . . , n, we have(

(W ◦ F)x
)
i

=
∑
j∈Fi

Wijxj +
∑
j∈Oi

WijD(xj) =
∑
j∈Fi

Wijxj +
∑
j∈Oi

Wij(α+ β − xj)

=
∑
j∈Fi

Wijxj +
∑
j∈Oi

(−Wij)xj + (α+ β)
∑
j∈Oi

Wij

=
∑
j∈Fi

Wijxj +
∑
j∈Oi

(−Wij)xj + (α+ β)Wi,Oi .
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Thus, we can set A ∈ Rn×n, d ∈ Rn with

Aij =

{
Wij if Fij = F,

−Wij if Fij = D,
, di = (α+ β)Wi,Oi . (1.6.2)

Example 1.6.1. Examples that satisfy the assumptions of Proposition 1.6.2 are, for instance, given in
Examples 1.4.3 and 1.4.4 above.

Next, we show that in case D is soft opposition on S = [α, β], we come ‘quite close’ to having the
condition ρ(A) < 1 satisfied, in case W is row-stochastic.

Proposition 1.6.3. Let S = [α, β] and let D be soft opposition. Then, for the operator W ◦F with the
representation (A,d), we have

ρ(A) ≤ 1.

Proof. Consider matrix A as defined in (1.6.2). We have, for all i = 1, . . . , n,
∑n
j=1 |Aij | =

∑n
j=1Wij = 1,

and therefore,

‖A‖∞ = 1,

where ‖·‖∞ is the row sum norm, defined in Definition 1.4.17. Moreover, by Theorem 1.4.5, it holds that

ρ(A) ≤ ‖A‖p ,

for any p-norm and any matrix A.

Remark 1.6.3. If Fij = F for all i, j ∈ [n], then A = W by (1.6.2) and ρ(A) = ρ(W) = 1 such
that W ◦ F never is a contraction mapping in this case. To see that ρ(W) = 1 is easy: any non-zero
consensus is a fixed-point of a row-stochastic matrix such that there exists an eigenvalue λ = 1 of W.
In other words, in the original DeGroot opinion dynamics model, without opposition, W ◦F cannot be a
contraction mapping.

A crucial question is, of course, what the condition ρ(A) < 1 in Proposition 1.6.2 actually means in
terms of multigraph structure. Below, in Proposition 1.6.6, we consider this question for the situation
when A is strictly positive in each entry, and, in Theorem 1.6.2, in the situation when A is symmetric
and when Aii = 0. In short, the condition ρ(A) < 1, which is the ‘Banach fixed point theorem condition’,
is equivalent, under the named assumptions, to the condition that the multigraph W ◦F is ‘unbalanced’
in that, e.g., two agents A and B have mutual friends but their friendship networks are not identical
such that, e.g., A opposes a friend of B. Apparently, this causes some inconsistency in the network —
e.g., a violation of ‘friendship transitivity’ — and, ultimately, leads agents to neutrality, where everyone
holds an uncontroversial opinion.30

Polarization

As in the discrete majority model, we now discuss polarization of opinions. Our first proposition is
identical to the corresponding proposition in the discrete case.

Proposition 1.6.4. Let W ◦ F opposition bipartite and let a, b ∈ S be opposing viewpoints. Then,
there exists a polarization opinion vector p of opinions a and b such that (W ◦ F)p = p.

30E.g., polarization cannot be upheld because of such inconsistencies as indicated.



CHAPTER 1. OPINION DYNAMICS UNDER OPPOSITION 40

Proof. Let N1 and N2 be the partition of the agent set [n] = {1, . . . , n} such that agents in Ni, i = 1, 2,
follow each other, while agents across the two sets oppose each other. Let a, b ∈ S be such that D(a) = b
and D(b) = a. Moreover, let p be such that each agent in N1 holds opinion a (or b) and each agent in
N2 holds opinion b (or a). Then, for each agent i1 ∈ N1:(

(W ◦ F)p
)
i1

=
∑
j∈N1

Wi1ja+
∑
j∈N2

Wi1jD(b) = a(
∑
j∈N1

Wi1j +
∑
j∈N2

Wi1j) = a = pi1 = (p)i1 ,

and analogously for agents in N2.

Our next proposition is a strengthening of the above in the case D is affine-linear. Namely, in this
situation, we can give conditions such that W ◦ F converges to a polarization, no matter the initial
opinions b(0), as long as F is opposition bipartite.

Proposition 1.6.5. Let D be soft opposition on S = [α, β] such that W ◦ F is affine-linear with
representation (A,d). Then, if F is opposition bipartite, λ = 1 is an eigenvalue of A. If λ = 1 is the only
eigenvalue of A on the unit circle and if λ = 1 has algebraic multiplicity of 1, then limt→∞(W◦F)tb(0) =
p for some polarization opinion vector p (that depends on b(0)) and all initial opinion vectors b(0) ∈ Sn.

Proof. We prove the proposition in the case β > 0 and α = −β.
To show that λ = 1 is an eigenvalue of A is simple. We need Ax = x for some x. Let a, b such that

a = −b with a 6= 0. Now, let xi = b if i ∈ N1 and xi = a if i ∈ N2, for all i = 1, . . . , n, where (N1,N2)
is the partition of the agent set [n] that arises since F is opposition bipartite. Then, clearly, Ax = x.
Now, since λ = 1 is the only eigenvalue of A on the unit circle and since λ = 1 is semisimple (since
the algebraic multiplicity ma of λ, which is 1, equals the geometric multiplicity mg, since ma ≥ mg in
general and mg ≥ 1 in our situation), limt→∞At converges by Theorem 1.4.4. Moreover, it is well-known
that Atb(0) converges to an eigenvector of A corresponding to λ = 1 in this situation, for any b(0) (see,
e.g., Meyer, 2000, p.630). Since the eigenspace corresponding to λ = 1 has dimension 1 (geometric
multiplicity of λ = 1 of 1) and since x as above is a polarization eigenvector, each eigenvector of A
corresponding to λ = 1 is a polarization.

Remark 1.6.4. Again, the proposition is abstract in that it gives conditions on the spectral radius of
matrix A that ensure polarization but does not state what these conditions mean in terms of multigraph
structure. In Theorem 1.6.2 below, we fill this gap and characterize, in graph theoretic terms, the
condition, for instance, “λ = 1 is the only eigenvalue of A on the unit circle and has algebraic multiplicity
of 1”.

Remark 1.6.5. For the subsequent analysis, let S = [−β, β] for convenience such that d = 0.
How does p(∞) := p = limt→∞(W ◦ F)tb(0) in Proposition 1.6.5 depend on the initial opinions

b(0)? One way to think of this limiting polarization is in terms of social influence vectors s ∈ Rn such
that ‖s‖1 =

∑n
k=1 |sk| = 1 (cf. Jackson, 2009; Golub and Jackson, 2010). Denoting the two opposing

viewpoints a and b (with D(b) = −b = a and D(a) = −a = b) in polarization vector p(∞) by a(∞) and
b(∞), respectively, and assuming that a relationship

a(∞) = sᵀb(0) =

n∑
i=1

sibi(0),

b(∞) = s̄ᵀb(0) =
∑
i=1

D(si)bi(0),

exists, for all initial opinions vectors b(0) — that is, limiting polarization is a linear combination of agents’
initial opinions where |si| denotes the social influence (proper) of agent i = 1, . . . , n and sgn(si) ∈ {±1}
denotes group membership of i ∈ [n] — we then have

sᵀb(0) = a(∞) = sᵀ(Ab(0))
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since a(∞) is the same whether we start from b(0) or Ab(0). But since this must hold for any b(0), we
have

sᵀ = sᵀA,

or, equivalently,

s = Aᵀs,

such that s is simply an eigenvector of matrix Aᵀ (corresponding to the eigenvalue λ = 1). In other
words, in order to compute p(∞) given b(0), it might be possible to compute the eigenvector s of Aᵀ

corresponding to λ = 1 and then apply s to b(0) in the form sᵀb(0) to derive one limiting viewpoint
and in the form s̄ᵀb(0) to derive the other. Hence, since social influence is given by an eigenvector of
Aᵀ, social influence of agents is measured by eigenvector centrality (cf. Bonacich, 1972), in the current
setting, in a very similar way as in the original DeGroot opinion dynamics model.

We give the following detailed example for Proposition 1.6.5 and the subsequent remark.

Example 1.6.2. Let n = 2 and let

W =

(
3
4

1
4

1
2

1
2

)
, F =

(
F D
D F

)
,

Let D be soft opposition on S = [α, β]. We first note that W ◦ F is opposition bipartite, e.g., with
N1 = {1}, N2 = {2}. Moreover, the affine-linear representation of W ◦ F is given by

A =

(
3
4 − 1

4
− 1

2
1
2

)
, d = (α+ β)

(
1
4
1
2

)
;

note that we assume that α = −β such that d = 0. The eigenvalues of matrix A are determined as the
roots of the characteristic polynomial χ(λ) = det(A − λIn) where In is the n × n identity matrix. We
have,

χ(λ) = (
3

4
− λ)(

1

2
− λ)− 1

8
=

1

4
− 5

4
λ+ λ2 = (λ− 1)(λ− 1

4
).

Hence, λ = 1 and λ = 1
4 are the two eigenvalues of A. Thus, λ = 1 is the only eigenvalue on the unit

circle and the algebraic multiplicity of λ = 1 is 1 since the exponent of (λ − 1) in χ(λ) is 1. Hence,
limt→∞(W◦F)tb(0) is a polarization for any b(0) ∈ Sn, by Proposition 1.6.5. To determine the influence
vector s, we need to compute the normalized eigenvector of Aᵀ corresponding to λ = 1. It is easy to
see that s = ( 2

3 ,−
1
3 )ᵀ is the searched for normalized unit vector since Aᵀs = s. Now, one sees how s

captures social influence: agent 1 is apparently more influential, since he weighs himself higher, than
agent 2 (3/4 self-weight vs. 1/2); accordingly, his influence weight in s is larger in absolute value, 2

3 >
1
3 .

Then, limiting opinions are simply given by,

a(∞) =
2

3
b1(0)− 1

3
b2(0),

b(∞) = −2

3
b1(0) +

1

3
b2(0).

For instance, if agents start with the consenus b(0) = (1
2 ,

1
2 )ᵀ, they will end up at the polarization

p(∞) = ( 1
6 ,−

1
6 )ᵀ. In Figure 1.10, we illustrate opinion dynamics for this setup and for a random

opposition bipartite multigraph.

Next, we show that ‘opposition bipartiteness’ is a very delicate condition in the continuous model
that, if slightly violated, does not lead agents to a polarization but, rather, to a neutral consensus (or to
divergence), in the situation when D is soft opposition. To this end, we define the notion of ‘opposition
(anti-)equivalent’ agents.
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Figure 1.10: Left: b(t), for t = 0, . . . , 20, for the process discussed in Example 1.6.2. Right: b(t), for
t = 0, . . . , 15, for a random 6 × 6 matrix W and an opposition bipartite network F (such that W ◦ F
satisfies the conditions of Proposition 1.6.5) and random initial opinions b(0) ∈ [−1, 1]6.

Definition 1.6.1. We call two agents i0, i1 ∈ [n] opposition equivalent if Fi0j = Fi1j for all j ∈ [n].
We call two agents i0, i1 ∈ [n] opposition anti-equivalent if Fi0j = ¬Fi1j for all j ∈ [n], where we let

¬D = F and ¬F = D.

Note that these two notions are closely related, e.g., to opposition bipartite networks. Namely, in the
latter situation, there exist two groups of agents N1 and N2 such that for all i0, i1 ∈ N1, i0 and i1 are
opposition equivalent (and follow each other) while for all i0 ∈ N1 and i1 ∈ N2, i0 and i1 are opposition
anti-equivalent.
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Figure 1.11: Balanced and unbalanced networks. The left network is opposition bipartite (balanced)
while the right is not. In particular, agents 3 and 4 have mutual ‘friends’ (agents 1, 2) while agent 6 is
in 3’s outgroup and 4’s ingroup.

Proposition 1.6.6. Let D be soft opposition on S = [α, β]. Let W > 0, entry-wise. Let (A,d) be the
representation of W ◦F. Assume that A has no complex eigenvalues (on the unit circle). Then, if there
exist agents i0 and i1 such that i0 and i1 are neither opposition equivalent nor opposition anti-equivalent,
then W ◦ F induces the consensus α+β

2 , for all initial opinion vectors b(0).

Proof. By Proposition 1.6.3, ρ(A) ≤ 1. We want to exclude the case ρ(A) = 1. This means we want to
exclude that ±1 ∈ σ(A) since A has no complex eigenvalues on the unit circle by assumption. For all
agents i = 1, . . . , n and any vector x ∈ Rn with ‖x‖∞ = maxi∈[n] |xi|, it holds that

|Ai1x1 + · · ·+Ainxn| ≤ |Ai1| |x1|+ · · ·+ |Ain| |xn| < (|Ai1|+ · · ·+ |Ain|) ‖x‖∞ = ‖x‖∞

unless |x1| = · · · = |xn| (since Wij = |Aij | is strictly positive by assumption, for all i, j ∈ [n]), in which
case equality may hold instead of <. Thus, if it does not hold that |x1| = · · · = |xn|, then Ax = x or
Ax = −x are impossible since both imply that ‖Ax‖∞ = ‖x‖∞, contradicting ‖Ax‖∞ < ‖x‖∞.
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So, consider x with |x1| = · · · = |xn|. Without loss of generality, we may assume that ‖x‖∞ = 1 such
that x is a vector with entries 1, either with positive or negative sign. In this case, for agent i0,

n∑
j=1

Ai0j xj︸︷︷︸
∈{±1}

= xi0 ∈ {±1}

implies that, by the structure of matrix A (row-stochasticity of W and Aij 6= 0 for all i, j ∈ [n]), all
summands Ai0jxj on the left-hand side of the last equation must have the same sign, either positive or
negative. But then, for agent i1, it cannot be that

∑n
j=1Ai1j xj︸︷︷︸

∈{±1}

∈ {±1}, since some summands of the

left-hand side of this equation must have opposite signs since i0 and i1 are neither opposition equivalent
nor opposition anti-equivalent. Thus, under the assumptions of the proposition, Ax = x or Ax = −x
cannot hold for any x ∈ Rn and, thus, A has no eigenvalues ±1, whence ρ(A) < 1 and W ◦ F is a
contraction mapping.

Remark 1.6.6. Proposition 1.6.6 gives less abstract conditions for convergence to a neutral consensus
than we have outlined before and which were based on the size of the spectral radius of matrix A in the
affine-linear representation of W◦F. Namely, in the situation of the proposition — e.g., with all weights
Wij strictly positive and no complex eigenvalues on the unit circle — a spectral radius of A strictly smaller
than 1 is implied by the condition that two agents i0 and i1 are ‘misaligned’ in the sense that there are
two distinct agents A and B such that i0 and i1 have the same relation to A but inverse relationships to
B. For example, A might both be in i0’s and i1’s ingroup, while B is in i0’s ingroup and in i1’s outgroup;
consider Figure 1.11 for an example. It is clear that such a configuration causes the corresponding
multigraph to be ‘unbalanced’ because of ‘contradicting’ friendship/animosity relationships since, in the
example made, i0’s and i1’s ingroups are overlapping but not identical. Accordingly, agents do not
polarize but converge to a neutral consensus. Thus, neutrality may be perceived of as resulting from a
lack of balance which would otherwise induce polarizations, in this context.

In the following beautiful theorem, Theorem 1.6.1, we generalize our above observation to the case
when the multigraph underlying W ◦F is strongly connected and aperiodic, rather than fully connected.
The theorem, together with its generalization in Theorem 1.6.2, gives an exhaustive classification of
results on convergence of (W◦F)tb(0) in case W◦F is strongly connected (and aperiodic); as restraining
conditions, we merely assume that Wii = 0 and that Aij = Aji, that is, intensity and kind of relationship
are symmetric. The more general cases are left for ongoing research. Our theorem is based, to a
significant degree, on the corresponding results given in Altafini (2013), who analyzes are very similar
situation as we, but considers the (time-)continuous process ẋ = −Lx, rather than the (time-)discrete
model b(t+ 1) = (W ◦ F)b(t), as we investigate.

As to the results, the theorem shows that agents polarize if and only if the operator W ◦ F is
opposition bipartite; that agents diverge if and only if the operator W ◦ F is anti-opposition bipartite;
and, finally, that agents reach a neutral consensus if and only if none of the former two conditions hold.

We first state the following simple lemma.

Lemma 1.6.1. Let W ◦F be an arbitrary multigraph. Then, W ◦F is opposition bipartite if and only
if W ◦ F̄ is anti-opposition bipartite, where F̄ is the matrix with entries F̄ij = ¬Fij .

Proof. See Figure 1.7, in Section 1.5, for a graphical proof.

If D is soft opposition on S = [−β, β], let (A,0) be the representation of W ◦ F. Then, the lemma
specializes to the statement that (A,0) is opposition bipartite if and only if (−A,0) is anti-opposition
bipartite.

Theorem 1.6.1. Let D be soft opposition on S = [−β, β] for some β > 0. Let W ◦ F be an arbitrary
operator such that Wii = 0 for all i ∈ [n]. Let (A,0) be the affine-linear representation of W ◦ F and
assume, moreover, that A is symmetric. Assume that W◦F is strongly connected (since A is symmetric,
we might also simply say ‘connected’) and aperiodic. Then:
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(i) W ◦ F induces a polarization if and only if W ◦ F is opposition bipartite.

(ii) W ◦ F diverges if and only if W ◦ F is anti-opposition bipartite.

(iii) W ◦ F induces a neutral consensus if and only if W ◦ F is neither opposition bipartite nor anti-
opposition bipartite.

Proof. The theorem follows from the following facts. (i) If W◦F induces a polarization, then, necessarily,
1 ∈ σ(A). But, (1) 1 ∈ σ(A) ⇐⇒ W ◦ F is opposition bipartite. Conversely, let W ◦ F be opposition
bipartite. Then, (2) |A| — the matrix with entries |Aij | — and A are isospectral, that is, they have
the same eigenvalues and with the same associated multiplicities. Now, (3) a strongly connected and
aperiodic row-stochastic matrix |A| has exactly one eigenvalue on the unit circle, λ = 1, with algebraic
and geometric multiplicity of 1. Therefore, A has exactly one eigenvalue on the unit circle, λ = 1, with
algebraic and geometric multiplicity of 1 and, consequently, converges by Theorem 1.4.4. Moreover, since
each polarization vector x with xi = 1 if i ∈ N1 and xi = −1 if i ∈ N2 satisfies Ax = (W ◦ F)x = x
when W ◦ F is opposition bipartite with partition (N1,N2), W ◦ F induces a polarization.

Part (ii) follows from the fact that 1 ∈ σ(A) ⇐⇒ W ◦ F is opposition bipartite and the fact that
W ◦ F with representation A is opposition bipartite if and only if −A is anti-opposition bipartite by
Lemma 1.6.1. Thus, −1 ∈ σ(A) ⇐⇒ W◦F is anti-opposition bipartite, whence A diverges by Theorem
1.4.4.

Finally, part (iii) follows since if W ◦ F is neither opposition bipartite nor anti-opposition bipartite,
then, by our above reasonings, ±1 /∈ σ(A), and since A is symmetric, A has no complex eigenvalues,
whence ρ(A) < 1 and, thus, W ◦ F is a contraction mapping. Consequently, W ◦ F induces the unique
neutral consensus (c, . . . , c) by Banach’s fixed point theorem, Theorem 1.4.2, where c = 0 due to the
choice of D.

Now, fact (3) is a classical theorem for row-stochastic matrices, which is, e.g., based on the famous
Perron-Frobenius theorem; in our context, it is given by combining Theorems 1.4.1 and 1.4.4, for example.
We prove facts (2) and (3) in the appendix, Lemmas 1.A.1, 1.A.2, and 1.A.3, respectively.

It is a well-known fact that graphs can be partitioned into strongly connected and closed groups
of nodes and the (possibly empty) ‘rest of the world’ (cf., e.g., Jackson, 2009; Buechel, Hellmann, and
Klößner, 2013). Hence, in the setup of Theorem 1.6.1, W ◦ F can be partitioned into precisely such
a structuring. Then, if the underlying graphs corresponding to each strongly connected group in the
partition satisfy aperiodicity, Theorem 1.6.1 may be applied to determine limits of W ◦ F.

Example 1.6.3. Let n = 12 and let W ◦ F be such that A has the form

A =


C1 0 0 0
0 C2 0 0
0 0 C3 0

rᵀ

 ,

where

C1 =
1

2

 0 −1 −1
−1 0 1
−1 1 0

 , C2 =
1

3


0 1 −1 1
1 0 1 −1
−1 1 0 1
1 −1 1 0

 , C3 =
1

3


0 1 1 1
1 0 1 1
1 0 1 −1
1 1 −1 0

 ,

and r is the vector with r3 = −0.6, r9 = 0.4 and rj = 0 for all other j ∈ [n]. The multigraph corresponding
to W◦F is shown in Figure 1.12. From this we see that, within all closed and strongly connected groups,
the underlying graphs are aperiodic such that Theorem 1.6.1 may be applied to the strongly connected
groups. Hence, we know that, no matter the initial opinions, agents {1, 2, 3} will polarize since their
underlying multigraph is opposition bipartite — we have, e.g., N1 = {1} and N2 = {2, 3}. Groups
{4, 5, 6, 7} and {8, 9, 10, 11} will either diverge or reach a neutral consensus. Since the group {4, 5, 6, 7}
is anti-opposition bipartite, it will, in fact, diverge and since the group {8, 9, 10, 11} is, in fact, neither
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opposition bipartite nor anti-opposition bipartite, it will reach a neutral consensus. The ‘rest of the
world’, agent 12, will attain a limit opinion that is a linear combination of the opinions of agents {1, 2, 3}
and {8, 9, 10, 11}— the latter attain a neutral consensus. We plot a sample evolution of the corresponding
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12

Figure 1.12: Description in text. As usual, we omit links corresponding to weights from the multi-
graphs, simply indicating links corresponding to opposition/following behavior. For convenience, we
color following in green and deviating in red. All links are undirected unless indicated by a respective
arrow.

opinion dynamics in Figure 1.13.

Now, we want to characterize limit behavior of a strongly connected W ◦F in case W ◦F is periodic,
rather than aperiodic. For this, we need the insight that the concepts of ‘opposition-bipartiteness’ and
‘anti-opposition bipartite’ collapse if and only if W ◦ F is periodic. Figure 1.14 illustrates.

Lemma 1.6.2. A strongly connected multigraph W ◦ F is periodic if and only if the concepts of
opposition-bipartiteness and anti-opposition bipartiteness coincide (that is, W◦F is opposition bipartite
if and only if W ◦ F is anti-opposition bipartite).

Proof. If W ◦ F is aperiodic, W ◦ F cannot be both opposition bipartite and anti-opposition bipartite
because this would contradict Theorem 1.6.1, parts (i) and (ii), according to which the two concepts are
distinct in this case (strongly connected and aperiodic opposition bipartite multigraphs have eigenvalues
λ = 1 on the unit circle and no other, there, while anti-opposition bipartite multigraphs have eigenvalues
λ = −1 on the unit circle and no other, there).

Conversely, assume that W◦F is periodic and assume that W◦F is opposition bipartite with partition
(N1,N2). Then, the crucial aspect to note is that there can be no triangles in W ◦ F, that is, nodes
i, j, k ∈ [n] such that Wij > 0, Wjk > 0 and Wik > 0 for otherwise — note that W ◦ F is symmetric —
there would be a simple cycle of length 3 in W ◦ F, whence the greatest common divisor of all simple
cycles would be 1 (a symmetric connected graph trivially has simple cycles of length 2), contradicting
that W ◦ F is periodic.

Hence, construct an anti-opposition bipartite partition of W◦F from (N1,N2) as follows. Let Ñ1 and
Ñ2 be empty sets. Take a ∈ N1, put it in Ñ1, together with all its ‘enemies’ and put the ‘friends’ of a in
Ñ2. Consider any friend c of any friend b of a (other than a). Clearly, since there are no triangles in W◦F,
a and c are in no friendship relation. Hence, put c in Ñ1 as well (c might have negative relationships with
the other nodes in Ñ1, which does not violate the conditions of anti-opposition bipartiteness). Continue
until all nodes are covered with c taking the role of a at the beginning of the process and note that no
condition of anti-bipartiteness is ever violated during the process.

By an analogue procedure, anti-opposition bipartiteness may be converted into opposition bipartite-
ness in the case of strongly connected periodic multigraphs.

With Theorem 1.6.1 and the lemma, we obtain the following corollary, which takes care of the
periodicity case of W ◦ F.
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Figure 1.13: Sample opinion dynamics for Example 1.6.3. We see polarization, neutrality, and divergence,
as well as an agent — agent 12, the ‘rest of the world’ — who holds an opinion that is a linear combination
of the opinions of member 1 of group {1, 2, 3} and of member 9 of group {8, 9, 10, 11}. Selected agents
highlighted.
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Figure 1.14: ‘Re-arranging’ an opposition bipartite partitioning of a strongly connected periodic multi-
graph to obtain an anti-opposition bipartite partitioning, Lemma 1.6.2 at work. Left: The periodic
multigraph. Middle: The original opposition-bipartite partitioning (N1,N2). Right: Choosing the sets
Ñ1 and Ñ2 of the anti-opposition bipartite partitioning.

Corollary 1.6.2. Let D be soft opposition on S = [−β, β] for some β > 0. Let W ◦ F be an arbitrary
operator such that Wii = 0 for all i ∈ [n]. Let (A,0) be the affine-linear representation of W ◦ F
and assume, moreover, that A is symmetric. Assume that W ◦ F is strongly connected (or, since A is
symmetric, simply ‘connected’) and periodic. Then:

(i) W ◦ F diverges if and only if W ◦ F is opposition bipartite.

(ii) W ◦ F induces a neutral consensus if and only if W ◦ F is not opposition bipartite.

Proof. Putting all results together, we obtain the following equivalences for symmetric, strongly con-
nected and periodic multigraphs W ◦ F with representation A:

W ◦ F is not OBIP ⇐⇒ ±1 /∈ σ(A) ⇐⇒ ρ(A) < 1 ⇐⇒ lim
t→∞

(W ◦ F)tb(0) = 0 ∀b(0) ∈ Sn,

where we let OBIP abbreviate ‘opposition bipartite’. The equivalences prove the corollary. The first
equivalence follows from the fact that W ◦ F is OBIP if and only if 1 ∈ σ(A) and W ◦ F is anti-OBIP
if and only if −1 ∈ σ(A) for strongly connected multigraphs. Hence, by Lemma 1.6.2, ±1 ∈ σ(A) if and
only if W ◦F is OBIP for strongly connected and periodic multigraphs. The second equivalence follows
since A is symmetric, whence it has no other potential eigenvalues than ±1 on the unit circle.
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Therefore, since periodicity and aperiodicity are mutually exclusive properties, we have fully char-
acterized limit properties of strongly connected W ◦ F in the case of soft opposition D on S = [−β, β]
and where we assume that the linear representation A of W ◦ F satisfies symmetry and Aii = 0. We
summarize our findings in the following theorem.

Theorem 1.6.2. Let D be soft opposition on S = [−β, β] for some β > 0. Let W ◦ F be an arbitrary
operator such that Wii = 0 for all i ∈ [n]. Let (A,0) be the affine-linear representation of W ◦ F and
assume, moreover, that A is symmetric. Assume that W ◦ F is strongly connected. Then:

(i) W ◦ F diverges if and only if W ◦ F is anti-opposition bipartite.

(ii) W ◦ F induces a polarization if and only if W ◦ F is opposition bipartite and aperiodic.

(iii) W◦F induces a neutral consensus if and only if it is neither opposition bipartite nor anti-opposition
bipartite.

Remark 1.6.7. The fact that polarization requires ‘exact’ balance (opposition bipartiteness) and admits
not a ‘grain of unbalancedness’, as stated in Theorem 1.6.1, may appear odd since one might expect, in
reality, small perturbations to balance (e.g., small-scale intra-group antagonisms or individual friendships
among enemies) to be the rule, rather than the exception, particularly in large enough systems.31 We
note that this result is, however, to a large part, due to the continuous opinion spectrum and the
averaging updating process that we have considered in this section. If the reader thinks that reality is
better perceived of as being discrete, with weighted majority voting a more plausible opinion updating
mechanism, then we note that, as we have shown, the discrete model is in fact robust against small
perturbations such that polarizing viewpoints can be Nash equilibria in this case even if the underlying
multigraphs exhibit (marginal) unbalancedness. In addition, we note that our analysis thus far has also
depended on the specification of weight sum requirements, as we illustrate in the following.

1.6.2 The requirement Wi,Fi = 1 +Wi,Oi

We have seen that, in the continuous model, agents cannot reach a non-neutral consensus, under op-
position. This is unlike in the discrete case, where the same conclusion requires a certain ‘weight mass
condition’, namely, that at least one agent’s outgroup is decisive for him. One way to interpret this,
consistent across both models, is to say that in the continuous model, under the row-stochasticity as-
sumption, Wi,A > 0 already means that group A ⊆ [n] is decisive for agent i, rather than Wi,A > 1

2
as in the discrete model. In this interpretation, one way to ‘address’ the issue of reaching non-neutral
consensus opinions is to either restrict the weight mass assigned to opposed agents (e.g., demanding
that Wi,Oi ≤ 1

2 in the discrete model) or to enlarge the weight mass assigned to trusted agents. In the
continuous model, we would be forced to consider the latter option since requiring that Wi,Oi ≤ 0 would
be tantamount to resorting to the standard DeGroot model, without opposition.

In the following, we sketch one possibility for agents to reach non-neutral consensus opinions in the
continuous model, even under the presence of opposition. We do so for a very special but important
instance of opposition function D, namely, soft opposition on R, that is, D(x) = −x (see below on
why we need to extend S to R, in this situation). In this setup, a weight mass requirement that allows
non-neutral consensus formation can be read off from the proof of Proposition 1.6.1, which illustrates
what ‘goes wrong’ under the row-stochasticity assumption. Namely, assuming that D(c) 6= c (c is a
non-neutral opinion), in order for c = (c, . . . , c)ᵀ to be a fixed-point of W ◦ F it must hold that:

c =
∑
j∈Fi

Wijc+
∑
j∈Oi

WijD(c) =
∑
j∈Fi

Wijc−
∑
j∈Oi

Wijc = c(
∑
j∈Fi

Wij −
∑
j∈Oi

Wij)

or, equivalently,

1 =
∑
j∈Fi

Wij −
∑
j∈Oi

Wij = Wi,Fi −Wi,Oi . (1.6.3)

31Facchetti, Iacono, and Altafini (2011) empirically demonstrate, however, that currently available on-line social networks
are indeed ‘extremely balanced’.
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Now, if Wi,Oi > 0, this requirement can never be satisfied if we additionally require row-stochasticity of
W, which means that 1 = Wi,Fi + Wi,Oi . If, instead of row-stochasticity, we demanded the following
weight sum restriction,

Wi,Fi = 1 +Wi,Oi , (1.6.4)

then (1.6.3) would trivially be satisfied and, consequently, even non-neutral opinions could be consensus
outcomes of opinion updating process (1.3.3). Comparing this with the requirement of row-stochasticity,
which reads, in other form,

Wi,Fi = 1−Wi,Oi , (1.6.5)

we find that

• under the row-stochasticity requirement (1.6.5), opposition ‘takes away’ weight mass from followed
agents, while

• under requirement (1.6.4), opposition ‘increases’ the weight mass that must be assigned to followed
agents. In other words, under requirement (1.6.4), the more an agent opposes her outgroup, the
more is she required to follow, or trust, her ingroup in order for her to have her ‘trust balance’
cleared. In this sense, it is clear that (1.6.4) facilitates attaining a non-neutral consenus, compared
with requirement (1.6.5). In addition,

• under requirement (1.6.4), all agents i = 1, . . . , n are ‘generally trusting’, that is, they assign more
weight mass to their ingroup than to their outgroup. Opposition is less strong an incentive than is
following one’s ingroup.

From a mathematical perspective, requirement (1.6.4) is more problematic because even if S is a
convex set, a weighted combination of elements of S where weights satisfy (1.6.4) need not be an element
of S, since convex sets are guaranteed to be closed only under convex combinations of their elements, that
is, where weights are taken from the unit simplex. Thus, to make this model mathematically well-defined,
we need to think of S as the whole real line R.

From an economic perspective, of our three justifications of DeGroot learning given in Section 1.3,
weight requirement (1.6.4) fails two, namely, the justification based on boundedly rational Bayesian
learning and the justification relating to aggregation theory because, in both instances, unit simplex
weights are assumed. It does not fail the justification based on myopic best-response updating, since if
we define agent i’s utility on opinion vector b as

ui(b) = −
∑
j∈Fi

Wij(bi −Wbj)
2 −

∑
j∈Oi

Wij(bi −WD(bj))
2, (1.6.6)

where W =
∑n
j=1Wij , then myopic best-response updating retrieves our learning rule (1.3.1) with weight

sum restriction (1.6.4). One interpretation that we may give utility structure (1.6.6) is that agents have
disutility from making opinion choices different from (positively) scaled opinion choices of agents they
follow and that agents have disutility from not deviating from (positively) scaled opinion choices of agents
they oppose.

In the sequel, we very briefly analyze the variant of the DeGroot model just introduced, thereby
showing that this model allows agents, in a number of cases, to attain non-neutral consensus vectors as
limits of the DeGroot opinion updating process.

Sufficient conditions for convergence to consensus

Proposition 1.6.7. Let D be soft opposition on S = R. Then W ◦ F is (affine-)linear and let (A,0)
be its representation. If W satisfies (1.6.4), then 1 ∈ σ(A). Moreover, if ρ(A) = 1 and λ = 1 is the only
eigenvalue of A on the unit circle and if λ = 1 has algebraic multiplicity of 1, then limt→∞(W ◦F)tb(0)
is a consensus for all b(0) ∈ Sn.



CHAPTER 1. OPINION DYNAMICS UNDER OPPOSITION 49

Proof. As in (1.6.2), A is the matrix with Aij = Wij if Fij = F and Aij = −Wij if Fij = D for all
i, j ∈ [n]. Moreover, we note that, under weight sum restriction (1.6.4),

n∑
j=1

Aij =
∑
j∈Fi

Aij +
∑
j∈Oi

Aij =
∑
j∈Fi

Wij −
∑
j∈Oi

Wij = Wi,Fi −Wi,Oi = 1

for all i = 1, . . . , n. In other words, the row sum of each row i of A is 1. But then, Ax = x for any
x ∈ Rn such that x1 = . . . = xn. Thus, 1 ∈ σ(A). As in the proof of Proposition 1.6.5, algebraic
multiplicity of λ = 1 of 1 and λ = 1 being the only eigenvalue on the unit circle, together with ρ(A) = 1,
imply that W ◦ F induces a consensus for any b(0) ∈ Sn, by Theorem 1.4.4.

Remark 1.6.8. In the proof, we have seen that weight sum restriction (1.6.4) implies that
∑n
j=1Aij = 1

for all i = 1, . . . , n. In contrast, under weight sum restriction (1.6.5), as discussed in the previous
subsection, rows of A satisfy

n∑
j=1

|Aij | = 1,

for all i = 1, . . . , n, as can easily be verified.

Remark 1.6.9. Analogously as in Remark 1.6.5, if the assumptions of Proposition 1.6.7 hold, limiting
consensus is given by

b(∞) = sᵀb(0) =

n∑
i=1

sibi(0),

where s is the eigenvector of Aᵀ corresponding to λ = 1. The vector s encodes social influence of the
agents i = 1, . . . , n.

Example 1.6.4. Let n = 3 with

W =

 2
3

1
3

2
3

1
2

1
2 0

1
3

1
3

1
3

 , F =

F D F
F F F
F F F

 ,

where D is soft opposition on S = R. Obviously, for each agent, weight sum restriction (1.6.4) is satisfied;
e.g., for agent i = 1, we have

Wi,Fi =
2

3
+

2

3
=

4

3
= 1 +

1

3
= 1 +Wi,Oi .

Then A has the structure

A =

 2
3 − 1

3
2
3

1
2

1
2 0

1
3

1
3

1
3

 .

The eigenvalues of A are 1 and 1
4 ±

1291
4000 i. Thus, since there are three distinct eigenvalues of a 3 × 3

system, each eigenvalue has algebraic multiplicity of 1, and, obviously, 1 is the only eigenvalue on the
unit circle and ρ(A) = 1. Hence, W ◦ F induces a consensus by Proposition 1.6.7. The limit consensus
is obtained by computing sᵀb(0) where s = ( 1

2 , 0,
1
2 )ᵀ, i.e.,

b(∞) =

n∑
i=1

sibi(0) =
1

2
b1(0) +

1

2
b3(0).

For instance, if agents start with initial opinions b(0) = (1, 2,−2)ᵀ, they will end up at the consensus
vector (− 1

2 ,−
1
2 ,−

1
2 )ᵀ. We illustrate dynamics for this setup in Figure 1.15.
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Figure 1.15: Opinions b(t), for t = 0, . . . , 10, for the process discussed in Example 1.6.4.

1.7 Conclusions

Opinions are important in an economic context (and other contexts) since they shape the demand for
products, set the political course, and guide, in general, socio-economic behavior. Models of opinion
dynamics model how individuals form opinions or beliefs about an underlying state or a discussion topic.
Typically, in the social networks literature, subjects may communicate with other individuals, their
peers, in this context, enabling them to aggregate dispersed information. Bayesian models of opinion
formation assume that agents form their opinions in a fully rational manner and have an accurate ‘model
of the world’ at their disposal, both of which are questionable and unrealistic assumptions, if compared
with actual social learning processes of human individuals (cf. Chandrasekhar, Larreguy, and Xandri,
2012; Corazzini et al., 2012, etc.). Non-Bayesian models, and most prominently the classical DeGroot
model of opinion formation, while also not unproblematic (cf. Acemoglu and Ozdaglar, 2011), posit that
agents employ simple ‘rule-of-thumb’ heuristics to integrate the opinions of others. Unfortunately, both
the non-Bayesian and Bayesian paradigms typically lead individuals to a consensus, which apparently
contradicts the facts as people disagree with others on many issues of (everyday) life. In the context of
DeGroot learning models, some works have sought to address this issue, either by assuming a homophily
principle whereby agents limit their communication to those who hold similar opinions as themselves or
by introducing stubborn agents, modeling, e.g., opinion leaders, who never update their opinions. Both
approaches are, again, debatable since the approach based on stubborn agents assumes truly autark
individuals and models based on homophily can typically neither explain short-term opinion fluctuations
(see the discussion in Acemoglu, Como, et al., 2012), nor functional disagreement whereby disagreeing
opinions are, in fact, opposing viewpoints rather than arbitrary and unrelated. Finally, the homophily
models that can account for disagreement rely on the condition that some subsets of society do not
communicate with, or learn from, each other, at least from some time point onward, as in the model
based on stubborn agents — a requirement that we find problematic since it is difficult to imagine subsets
of society without any mutual influence.32 In any case, models based on homophily and stubborn agents
both ignore negative relationships between individuals as potential sources for conflict and disagreement.

In the current work, we have investigated opinion dynamics under opposition, as (such) a potentially
alternative explanation for disagreement. In our setup, agents are driven by two forces: they want
to adjust their opinions to match those of the agents they follow (their ‘ingroup’ or those they trust)
and, in addition, they want to adjust their opinions to match the ‘inverse’ of those of the agents they
oppose (their ‘outgroup’ or those they distrust). Best responses in this setting lead us to a DeGroot-
like opinion updating process whereby agents form their next period opinions via weighted arithmetic
averages of their neighbors’ (possibly inverted) opinion signals. Our paradigm can account for a variety of
phenomena such as consensus, neutrality, disagreement, and (functional) polarization, depending upon

32Particularly in today’s ‘globalized world’.
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network (multigraph) structures and specifications of deviation functions, as we have demonstrated,
both analytically and by means of simple simulations. Psychologically and socio-economically, we have
interpreted opposition as arising either from rebels; countercultures; rejection of the norms and values
of disliked others, as ‘negative referents’; or, simply, distrust.

One issue that has been left undiscussed so far is the fact that, possibly unlike social norms and
values, opinions oftentimes (though probably far less than always) admit a ‘truth’ against which they
may be evaluated; accordingly, some research papers (e.g., Golub and Jackson, 2010) have asked for the
conditions under which agents may converge to a consensus that is even correct. Under opposition, as we
have specified, such a convergence to a correct consensus is severely compromised, as we have indicated.
Namely, if agents converge to a consensus at all, then, as seen, such a consensus is typically a neutral
consensus. In the continuous approach, if the opinion spectrum is a dense subset of the real line and
the set of neutral opinions is, as we might plausibly assume, small (e.g., finite or even a singleton), then,
from a probabilistic perspective, chances for agents of reaching a correct consensus are virtually zero.
Alternatively, if agents disagree, or, more specifically, polarize, then, of course, at most one group of
agents can be correct but, given a functional dependence of limiting opinions, we would expect none to
be.

Finally, concerning future research directions within our context, both weight links and opposition
links between agents, W and F, have been assumed exogenous in the current work. Prospectively, it
might be worthwhile to consider endogenous link formation processes. In particular, the origin and
evolution of opposition behavior, and its relation to agents’ opinions and external factors, such as, most
importantly, to external truth, might be of interest, among other things.

Appendix 1.A Theorems and proofs

Theorem 1.A.1 (Brouwer’s fixed point theorem). Let K ⊆ R be convex and compact and let f : K →
K. Then, f has a fixed point.

Lemma 1.A.1. Let D be soft opposition on S = [−β, β], for some β > 0. Let W ◦ F be an arbitrary
operator with representation A such that Aii = 0 and Aij = Aji. Then, W ◦F is opposition bipartite if
and only if there exists a diagonal matrix ∆ such that ∆A∆ = |A|, where |A| denotes the matrix with
entries |Aij |.

Proof. Let W◦F be opposition bipartite with partition (N1,N2). Choose ∆ii = 1 if i ∈ N1 and ∆ii = −1
if i ∈ N2. Then, as one can verify, ∆A∆ = |A|.

Conversely, let ∆A∆ = |A| so that |Aij | = ∆ii∆jjAij . Hence, if Aij 6= 0, ∆ii,∆jj ∈ {±1}. Choose
i ∈ N1 if ∆ii = 1 and i ∈ N2 otherwise.

Lemma 1.A.2. Let |A| = ∆A∆ as in Lemma 1.A.1. Then A and |A| have the same eigenvalues with
the same multiplicities.

Proof. Since ∆−1 = ∆, ∆A∆−1 represents a similarity transformation.

Lemma 1.A.3. Let D be soft opposition on S = [−β, β], for some β > 0. Let W ◦ F an arbitrary
operator with representation A such that Aii = 0 and Aij = Aji. Then, W ◦F is opposition bipartite if
and only if λ = 1 is an eigenvalue of A.

Proof. Altafini (2013), Lemma 1, shows that 0 ∈ σ(L) if and only if A is opposition bipartite where
L = In −A. Clearly, 1 ∈ σ(A) ⇐⇒ 0 ∈ σ(L).
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[16] Berno Buechel, Tim Hellmann, and Stefan Klößner. “Opinion Dynamics under Conformity”. Work-
ing Paper. 2012.

[17] Berno Buechel, Tim Hellmann, and Michael Pichler. “The Dynamics of Continuous Cultural Traits
in Social Networks”. Working Paper. 2012.

52

http://web.mit.edu/asuman/www/documents/disagreementsubmitted.pdf
http://web.mit.edu/asuman/www/documents/disagreementsubmitted.pdf


BIBLIOGRAPHY 53

[18] Zhigang Cao, Mingmin Yang, Xinglong Qu, and Xiaoguang Yang. “Rebels Lead to the Doctrine of
the Mean: Opinion Dynamic in a Heterogeneous DeGroot Model”. In: The 6th International Con-
ference on Knowledge, Information and Creativity Support Systems. Bejing, China, 2011, pp. 29–
35.

[19] Emanuele Castano, Vincent Yzerbyt, David Bourguignon, and Eléonore Seron. “Who may Enter?
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Chapter 2

(Failure of the) Wisdom of the
crowds in an endogenous opinion
dynamics model with multiply
biased agents

Abstract

We study an endogenous opinion (or, belief) dynamics model where we endogenize the social
network that models the link (‘trust’) weights between agents. Our network adjustment
mechanism is simple: an agent increases her weight for another agent if that agent has
been close to truth (whence, our adjustment criterion is ‘past performance’). Moreover, we
consider multiply biased agents that do not learn in a fully rational manner but are subject
to persuasion bias — they learn in a DeGroot manner, via a simple ‘rule of thumb’ — and
that have biased initial beliefs. In addition, we also study this setup under conformity,
opposition, and homophily — which are recently suggested variants of DeGroot learning in
social networks — thereby taking into account further biases agents are susceptible to. Our
main focus is on crowd wisdom, that is, on the question whether the so biased agents can
adequately aggregate dispersed information and, consequently, learn the true states of the
topics they communicate about. In particular, we present several conditions under which
wisdom fails.

2.1 Introduction

Crowds can be amazingly wise, even wiser than the most accurate individuals among them. An early
formalization of this insight has been Concordet’s Jury theorem from 1785 (Concordet, 1785), which
states that a simple majority vote of the opinions of independent and fallible lay-people may provide
near-perfect accuracy if the number of voters is sufficiently large.1 Over a hundred years later, in 1906,
Francis Galton found strong empirical support of Concordet’s theoretical finding at an agricultural fair
in Plymouth. At a weight-judging contest, participants were asked to privately estimate the weight of a
chosen live ox after it had been slaughtered and dressed (meaning that the head and other parts were
removed). The winner was the one whose estimate was closest to the true weight of the ox. When
analyzing the results in a Nature article the following year (Galton, 1907), Galton found that the simple
average of the entire crowd was even more accurate than the winner and that the median of the 787
valid guesses, 1197 pounds, was extremely close to the true weight, 1198 pounds (cf. Bahrami et al.,
2012; Acemoglu and Ozdaglar, 2011). This finding was obtained even though most participants were
no ‘experts’ in this contest, with little specialized knowledge in butchery; yet, their estimates could

1Which also requires that each individual in the group of voters is more likely correct than not.
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obviously contribute to the crowds’ overall success. Galton took this result as evidence that democratic
political systems may work.

Yet, contradicting this optimistic viewpoint concerning the wisdom of crowds, it has also been ob-
served that groups of individuals may be quite fallible, and possibly even more fallible than most or
all of their members. One result of this kind is already hidden in Concordet’s Jury theorem: namely,
if each lay-person is just slightly ‘too uniformed’ (or slightly ‘too much mistaken’), then the majority
vote may be much less accurate than each individual’s estimate. Drawing upon empirical observations,
a comprehensive illustration of ‘crowd madness’ has been brought forward in Scottish journalist Charles
Mackay’s (Mackay, 1841) work The extraordinary and popular delusions and the madness of crowds,
where the author chronicles ‘humankind’s collective follies’, including financial bubbles, in the economics
context, and other popular ‘delusions’ such as witch-hunts and fortune-telling (cf. Bahrami et al., 2012),
thus challenging the claim that “two heads are better than one”.

Today — while, according to scholars’ opinions, the question of wisdom of crowds continues to be one
of the most important issues facing social sciences in the twenty-first century —2 more is known on group
wisdom and collective failure. On the one hand, the mean of the opinions of several individuals may
become increasingly accurate, for large groups, merely as a consequence of the law of large numbers. This
holds under restrictive assumptions — in particular, that the beliefs of individuals are independent and
probabilistically centered around truth such that, on an aggregate level, individual errors cancel out. On
the other hand, much empirical literature, foremostly in psychology, has documented that, frequently,
“groups outperform individuals [...], although groups typically fall short of the performance of their
highest-ability members” (Kerr, MacCoun, and Kramer, 1996, p.691).3 In fact, a very recent experiment
by Lorenz et al. (2011) finds that ‘social influence’, in a broad meaning, in a group causes individuals’
beliefs to become more similar over time, without improvements in accuracy, however. Hence, much
depends on how groups aggregate or process individual opinions and also on these initial predispositions
of agents. Kerr, MacCoun, and Kramer (1996)’s insight is that whether groups perform better than
individuals may depend, among other things, on the following aspects: (1) the way that groups aggregate
the opinions of individuals (that is, the group decision, or belief integrating, process), (2) the bias of
individuals, and (3) the type of bias. Concerning issue (1), the way agents in groups process their peers’
beliefs, we assume a specific structural form below, which has empirically proved plausible for learning
in the domain we consider (social networks).

Issue (2), individuals’ bias, will be another central notion in our work. The classical work of Tversky
and Kahnemann (1974) documents several biases human judgment is susceptible to. In particular,
anchoring biases describe the psychological condition of humans to pay undue attention to initial values
— e.g., typically, individuals estimate the product 9× 8× 7× 6× 5× 4× 3× 2× 1 to be higher than the
product of factors in reverse order, which is attributed to subjects’ performing an initial approximate
computation based on the first few terms, which entails a biasing anchor (the same effects may happen if
the anchor is exogenously specified, e.g., by providing the subjects with random numbers as anchors and
then querying them for their own judgement). Biases of availabilty refer to the phenomenon of assessing
(and, consequently, possibly, misjudging) the probability of an event by the ‘ease with which instances
or occurrences can be brought to mind’, and, finally, biases of representativeness lead subjects to assess
the probability that an object is of a particular class (e.g., that a person has a certain profession) by the
degree to which the object is representative of the class, which may lead to judgement errors because such
reasoning ignores, e.g., base-rate frequencies. In another typological classification of bias, Kerr, MacCoun,
and Kramer (1996) distinguish between judgmental sins of imprecision (systematically deviating from
prescribed and precise use of information, such as ignoring Bayes’ theorem when forming beliefs or
being affected by framing; see Kahnemann and Tversky, 1984), judgmental sins of commission (using
irrelevant information to arrive at a decision, such as the attractiveness of an accused) and judgmental
sins of omission (ignoring relevant information, such as base-rate information).

We now describe the setup investigated in the current work, relating to the issues discussed above
subsequently. We consider a (social) network of individuals, or agents, that form opinions, or beliefs,

2See the recent survey at http://bit.ly/hR3hcS.
3Groups can also blatantly fail, as, e.g., in groupthink (Janis, 1972), hidden profiles (Wittenbaum and Stasser, 1996),

etc. See the overview in Kerr and Tindale (2004).
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about an underlying state or a discussion topic.4 We assume that agents start with some initial beliefs, at
time zero, and then, as time progresses, learn from each other through communication. Communication
between any two individuals takes place if there is a link between them in the network. In the current
work, we assume a specific form of learning paradigm, DeGroot learning, that posits that agents update
their beliefs by taking weighted arithmetic averages of their peers’ past beliefs, whereby the weights are
given by the (social) ties between the agents in the network. Much has been said on the adequacy (or
inadequacy) of DeGroot learning — a ‘boundedly rational’ learning paradigm that posits that agents
are susceptible to persuasion bias, not properly adjusting for the repetition of information they hear —
which, as experiments claim (e.g., Chandrasekhar, Larreguy, and Xandri, 2012; Corazzini et al., 2012),
appears as a more plausible standard of human social learning than, e.g., fully rational Bayesian learning
and we refer the reader to, e.g., DeMarzo, Vayanos, and Zwiebel (2003), Golub and Jackson (2010) or
Acemoglu and Ozdaglar (2011) for extensive discussions. While the DeGroot model of opinion formation
is quite old, dating back to Morris H. DeGroot’s (DeGroot, 1974) seminal work, the framework has only
more recently received increasing attention from the economics community.

In this context, one matter that has been put forth as a central guiding question in DeGroot learning
models, and which connects to our initial discussion, is whether the ‘näıve’ DeGroot learners, who commit
the ‘sin of imprecision’ of not (properly) applying Bayes’ theorem, can, in fact, become ‘wise’ (Golub
and Jackson, 2010). Here, a society (set of agents) is called wise, roughly, if it reaches a consensus —
in the limit, as time (discussion periods) goes to infinity — that corresponds to truth. In Golub and
Jackson (2010), the question relating to wisdom has been answered in the affirmative — (even) näıve
(DeGroot) learners do become wise under rather mild conditions; namely, all that is required is that no
näıve learner is excessively influential, whereby an agent is excessively influential if his social influence
(how limiting beliefs depend on this agent’s initial beliefs) does not converge to zero as society grows. In
undirected networks (social ties are mutual) with uniform weights, an obstacle to wisdom would then,
e.g., be that each agent newly entering society assigns, e.g., a constant fraction of his links to a particular
agent, who would then be excessively influential. Hence, as long as links are somewhat ‘democratically’
balanced, näıve DeGroot learners would apparently become wise. While we hold the analysis of Golub
and Jackson (2010) to be an important ‘benchmark’ for DeGroot learning, we think that it is overly
optimistic in at least one of its critical two assumptions, namely, the (1) unbiasedness of agents’ initial
beliefs.5

In the current work, we drop, in particular, the largely implausible, as we find, assumption (1).
Our central notion will be as illustrated in Figure 2.1, which we adapt from Einhorn, Hogarth, and
Klempner (1977). In words, we assume that some agents’ initial beliefs are biased, with an expected
value that is different from truth µ, and that other agents’ initial beliefs are unbiased, with an expected
value that equals truth µ — we remark here that we abstract away from the precise type of bias some
agents’ initial beliefs are subject to, that is, we are agnostic about whether, e.g., agents commit sins
of imprecision, commission, or omission in forming their initial beliefs, simply assuming that at least
some agents’ initial beliefs are biased. We might, if we wish, label the first kind of agents ‘non-experts’
and the second ‘experts’, although this might be slightly misleading, as even experts can be biased, of
course; nonetheless, for convenience, we keep this terminology in the following. A situation as sketched
may be quite challenging to assess, for individuals. Ignoring non-experts may be suboptimal, in some
circumstances, because their verdicts may still not be totally irrelevant in that their opinions may have
(relatively) large probability of being close to truth. Consider, in particular, the bottom part of Figure
2.1 where the ‘expert’ is unbiased but has high variance. In this case, for each ‘closeness interval’
around truth, the non-expert’s initial belief has higher probability of falling within this interval than the
expert’s beliefs. Thus, if there is exactly one expert and one non-expert, it would be optimal, for an
outside observer, to disregard the expert’s opinion and, in the absence of further information, adopt the
non-expert’s opinion. However, if there are many experts with identical and independent distributions

4Opinions or beliefs are important, from an economics perspective, because they crucially shape economic behavior:
consumers’ opinions about a product determine the demand for that product and majority opinions set the political course,
etc. See Buechel, Hellmann, and Klößner (2013).

5The other critical assumption is biasedness of the belief formation process (DeGroot learning — agents are prone to
persuasion bias). Finally, of crucial relevance is also independence of agents’ initial beliefs, which we do not challenge here,
however.



CHAPTER 2. ENDOGENOUS OPINION DYNAMICS MODEL WITH BIASED AGENTS 60

µ

Expert
Non-expert

Expert
Non-expert

µ

Expert
Non-expert

Expert
Non-expert

Expert
Non-expert

Figure 2.1: Schematic illustration of experts’ and non-experts’ distribution of initial beliefs. Right figures
show probability masses of falling within an (arbitrary) small interval around truth, for both experts
and non-experts.

and also many non-experts with identical and independent distributions, then an optimal aggregation
of information would ignore the non-experts’ and average the experts’ opinions.

We study this setup in an endogenous DeGroot learning model, where we endogenize the (social)
network. In particular, we assume that the ‘trust’ links between agents in the network are based on
‘past performance’, which has been outlined as a relevant reputation building criterion in the psychology
literature (cf. Yaniv and Kleinberger, 2000; Yaniv, 2004). We think that the endogenous model is the
‘right’ setup for our investigation of wisdom in DeGroot learning under biased initial beliefs because if
the network structure is assumed exogenous, then one relatively uninteresting solution to the wisdom
problem would, e.g., be to ignore the biased agents — in contrast, in the endogenous model, the question
arises what weighting scheme individuals actually learn for the biased (and unbiased) agents, under given
assumptions concerning the agents’ behavior. Since we learn the network structure endogenously, by
looking at agents’ past performance (how often have they been close to truth previously?), we necessarily
study learning in a repeated setting, where agents are involved in repeated communications over multitudes
of topics, whereby past beliefs and their external validation may inform today’s beliefs and the network
structure. Our network learning rule is quite simple: we increment the weight that one agent places
upon another by some δ > 0 if the latter agent has been in a predefined ‘η-radius’ around truth for the
current topic. We show that this is a ‘utility maximizing’ rule6 provided that agents expect, subjectively,
that all other agents’ beliefs are unbiased, which we call the bona fides (or, ‘good faith’) assumption.

6Or at least a good approximation to a solution of a maximization problem.
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Intruigingly, the bona fides assumption concerning the unbiasedness of other agents’ initial beliefs may be
consistent with the ‘egocentric bias’ hypothesis which suggests that “interacting human agents operate
under the assumption that their collaborators’ decisions and opinions share the same level of reliability”
as their own; the upholding of this bias, even despite potential collective failure, might then be due to
the social obligation to treat others as equal to oneself, despite their conspicuous inadequacy, or due to
the urge to contribute to the group (Bahrami et al., 2012).

To summarize our model, in our setup, agents hold beliefs and learn, via communication, about a
multitude of topics X1, X2, X3, . . ., each with an associated ‘truth’ µ1, µ2, µ3, . . .. Within each topic Xk,
‘discussion rounds’ are indexed by discrete time steps t = 0, 1, 2, . . . and in each time step t ≥ 1, agents
update their beliefs on Xk by integrating their peers’ beliefs, starting with some exogenously specified
initial beliefs on Xk. After a topic has been communicated about (for an infinite amount of time), truth
µk is revealed, whereupon agents adjust the ‘trust’ weights they assign to other agents (they ‘learn’, or
‘grow’, the network topology) based on agents’ past performance: if an agent has been close to truth for
topic Xk, agents increase their trust for this agent by increasing the respective weight by δ. Our agents
are multiply biased (or ‘näıve’):

(i) At least some agents’ initial beliefs are systematically biased in that the expected values of their
initial beliefs are different from truth µk, for all k = 1, 2, 3, . . .. For initial beliefs, we abstract away
from the particular kind of bias agents are subject to, simply assuming that some kind of bias plays
a role.

(ii) Agents are subject to persuasion bias in updating their beliefs on Xk in that they apply the
DeGroot learning paradigm rather than a fully rational Bayesian belief updating framework.

(iii) In adjusting weights for other agents, agents are egocentrically biased : they assume that their own
judgments are relevant (more precisely, their initial beliefs are unbiased) and they assume that
their peers’ beliefs share the same level of reliability as their own (more precisely, that their peers’
initial beliefs are also unbiased). This bias justifies the weight adjustment rule — adding δ — that
we have sketched (see Section 2.3).

Besides this basic setup, we consider refinements of standard DeGroot learning recently suggested —
DeGroot learning under opposition, conformity, and homophily — in each case incorporating our endo-
genized network structure and, in addition, the three kinds of biases discussed above. We show that,
in these more refined versions of DeGroot learning, which are supposed to endow the DeGroot learning
paradigm with a more ‘realistic’ structure, wisdom is even more difficult to arrive at, as we discuss below.

Our main contributions over existing work are as follows.

• We more thoroughly investigate the concept of bias in social (network) learning — or more specifi-
cially, DeGroot learning — than previous literature. In particular, as mentioned, we allow agents’
initial beliefs to be biased and consider further biases, as discussed.

• We endogenize the network structure in DeGroot learning and we do so by referring to the notion of
‘past performance’. Of course, in the vast literature on networks, (‘endogenous’) network formation
processes are not novel; often, however, the network is adapted, in the literature more or less
relevant to our setup, by adding or deleting (costly) links as in Jackson and Watts (2002) and
Goyal (2004), etc., rather than by increasing link weight based on agents’ past performance. In
DeGroot learning, self-evolving networks are discussed, e.g., in the work on DeGroot learning and
homophily (e.g., Pan, 2010 and the Hegselmann and Krause models), but weight adjustments based
on truth, as we model, must be considered distinct from these mechanisms.

• As mentioned, we consider multitudes of topics, rather than a single topic, in DeGroot learning,
and we crucially allow truth to be revealed at some stage. This differs from all the previous work,
where agents have been in the unfortunate situation of eternally communicating about a given
topic, without ever knowing its true state.

• We incoporate other DeGroot variants in our setup. In particular, we provide an alternative to
the homophily model designed by Hegselmann and Krause (Hegselmann and Krause, 2002), see
Section 2.9.
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• We derive a microeconomic foundation for weight adjustments as we implement by defining an
individual agent’s optimization problem — in particular, we assume that agents have negative
utility from not knowing truth — and by computing a closed-form solution to this problem.7 We
then show how our heuristic weight adjustment rule — adding δ — corresponds to the solution of
the optimization problem.

Our main findings are as follows.

• For the standard model, we first show that agents reach a consensus for almost all topics Xk,
under weak conditions, in our endogenized DeGroot learning paradigm (Proposition 2.6.1 and
Remark 2.6.2). This confirms the commonly held belief (cf. Acemoglu and Ozdaglar, 2011) that
the standard DeGroot model leads agents to consensus (so easily) but also shows that, in our
endogenized model, conditons that prevent consensus are, in fact, not satisfied.

• Next, we illustrate that if all agents’ initial beliefs are unbiased, then agents in fact reach a consensus
that is even correct, for ‘large’ topics Xk and as agent group size n becomes large. This holds both
when agents adjust weights based on limiting beliefs and on initial beliefs (Propositions 2.6.3
and 2.6.4, respectively); we define the notions of relevant weight adjustment time points below.
When there are biased agents, then agents’ limiting beliefs are generally a convex combination
of the unbiased agents’ initial beliefs and the biased agents’ initial beliefs. We demonstrate the
truthfulness of this claim under various parametrizations (Propositions 2.6.5, 2.6.7, 2.6.8). We also
give sufficient conditions on when agents may converge to truth, for large topics, even under the
presence of biased agents (Propositions 2.6.5 and 2.6.6), but these conditions are ‘low probability
events’ (or require a sufficiently high valuation of truth) and they hold only under the particular
parametrization that agents stop learning the network topology in case ‘everything is fine’, as we
define below.

That limiting consensus beliefs are convex combinations of biased and unbiased beliefs may imply
that limiting beliefs are ‘arbitrarily’ far off from truth, provided that the number of biased agents
is sufficiently large (Corollary 2.6.3), thus demonstrating that agents do not optimally aggregate
information in our endogenized DeGroot learning model, at least under certain conditions.

• Next, for opinion dynamics ‘under opposition’, a recently suggested DeGroot learning variant where
agents are motivated by ‘ingroup’/‘outgroup’ relationships (Eger, 2013), we show that even if all
agents’ initial beliefs are unbiased and, more particularly, agents receive arbitrarily accurate initial
signals about topics, some agents may be arbitarily far off from truth. In other words, we show
that if agents have additional incentives besides truth, namely, to disassociate from unliked others
— such agents must be thought of as additionally biased; namely, they must be thought of as, e.g.,
committing the sin of omission to ignore the unliked others’ relevant information and the sin of
commission to incorporate irrelevant information, namely, the ‘opposite’ of unliked others’ beliefs
—8 then wisdom is even more difficult to attain. This, in particular, concerns several important
fields of everyday life, such as the political arena.

• Then, for DeGroot learning ‘under conformity’ — that is, when agents want to conform to a
reference opinion (again, which may be thought of as a sin of commission) — another recent
variant of DeGroot learning (Buechel, Hellmann, and Klößner, 2012), we show that even if the
unbiased agents have never been truthful in the past, they may become arbitrarily influential,
something that is not possible in the standard model, and which, again, shows that additional
biases may worsen the case for wisdom.

• Finally, in case homophily also plays a role — that is, when agents have the tendency to adjust
the social network topology based on agents with similar beliefs — then, again, wisdom is more
difficult to arrive at. We show this (only) by simulation since this process is (much) more difficult
to analyze analytically as it deals with learning matrices that are changing over time (and not

7In spirit, our approach is similar to that of DeMarzo, Vayanos, and Zwiebel (2003).
8They may generally be thought of as biased toward ingroup members, cf. Brewer (1979).
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only across topics). In our context, homophily can also be seen as a search bias in which subjects
overrate beliefs that are close to their own (cf. Kunda, 1990).

The structure of this work is as follows. In Section 2.2, we present related work, beyond what we
have already referred to. In Section 2.3, we give a formal outline of our model, and, in Section 2.4,
a ‘justification’ of our network learning rule. In Section 2.5, we introduce relevant notation. Then, in
Sections 2.6, 2.7, 2.8, and 2.9, we derive our results, as outlined above, on the standard model, and
the DeGroot variants under opposition, conformity, and homophily, respectively. In Section 2.10, we
conclude. We list several proofs in the appendices; there, we also report on a ‘small-scale’ experiment
on the (un)biasedness (and the distribution) of individuals’ (initial) beliefs concerning several ‘common
knowledge questions’.

Before actually listing related work in Section 2.2, we now briefly discuss this experiment and the
lessons that we learn from it.

A small-scale experiment concerning the (un)biasedness of individuals’ beliefs. As we have
mentioned, some research papers have assumed that individuals’ initial beliefs on topics are unbiased,
that is, centered around truth. Certainly, this assumption may sometimes be plausible, e.g., depending on
the topic, but, as we have indicated, we do not think that the condition holds across a large spectrum of
circumstances. We conducted an experiment where we asked individuals on Amazon Mechanical Turk9

16 ‘common knowledge questions’. The questions ranged from, to our opinion, rather easy problems such
as ‘What do you think is the year the first world war started?’ or ‘What do you think is 17− 4× 2?’ to
rather difficult problems, such as ‘What do you think is the number of people per square mile in China’s
capital Beijing?’ or ‘What do you think is the diameter of the sun in miles?’. We list all 16 questions in
Appendix 2.B.

On all questions, more than n = 100 subjects answered (between n = 110 to n = 119). Analyzing
the answers (see Figures 2.16 and 2.17), we find that, typically, neither the mean of the answers nor the
median are very close to the true value. In fact, on only 8 out of 16 questions is the median (which tends
to be more reliable since it is not so much affected by outliers) within a 10% interval around truth, and
on only 6 out of 16 questions does this hold for the mean. Looking at 1% intervals, these numbers drop
to 6 and 2, respectively (for the mean, these questions are about the start of the first world war and the
average height of an adult male US American). Such low numbers were truly surprising if in fact the
assumptions of unbiasedness and independence of (initial) beliefs were true, given the validity of the law
of large numbers. A slightly more detailed analysis is given in Appendix 2.B.

2.2 Related Work

Early and frequently cited predecessors of DeGrootian opinion dynamics are French (1956) and Harary
(1959), although the now famous ‘averaging’ model of opinion and consensus formation has only been
popularized through the seminal work of DeGroot (1974). At about the same time, Lehrer and Wagner
(Wagner, 1978; Lehrer and Wagner, 1981; Lehrer, 1983) have developed a model of rational consensus
formation in society that, in both its implications and its mathematical structure, is very similar to
the DeGroot model. In the sociology literature, Friedkin and Johnsen (1990) and Friedkin and Johnsen
(1999) develop models of social influence that generalize the DeGroot model. In more recent years, a
renewed economic interest in the DeGroot model of opinion dynamics has emerged, leading to a number
of further extensions proposed. For example, DeMarzo, Vayanos, and Zwiebel (2003), besides sketching
psychological justifications for DeGroot learning relating to persuasion bias as discussed above, discuss
time-varying weights on own beliefs that capture, e.g., the idea of a ‘hardening of positions’: over time,
individuals may be more inclined to rely on their own beliefs rather than on those of their peers. Further
extensions of the classical DeGroot model include Golub and Jackson (2010), whose contribution is to
analyze weight structures such that DeGroot learners whose initial beliefs are stochastically centered
around truth converge to a consensus that is correct, and the works of Daron Acemoglu and colleagues.
For example, Acemoglu, Ozdaglar, and ParandehGheibi (2010) distinguish between regular and forceful

9Available at https://www.mturk.com/mturk/.
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agents, such as, in an economic interpretation, monopolistic media (forceful agents influence others
disproportionately), and Acemoglu, Como, et al. (2012) distinguish between regular and stubborn agents
(the latter never update), to account for the phenomenon of disagreement in societies; in Yildiz et al.
(2012), a discrete version of the DeGroot model with stubborn agents is analyzed in which regular
agents randomly adopt one of their neighbors’ binary opinions. Another interesting DeGroot variant
is discussed in Buechel, Hellmann, and Klößner (2012) where agents’ stated opinions may differ from
their true (or private) opinions and where it is assumed that agents generally wish to state an opinion
that is close to that of their peer group even if their true opinions may be very different (which is
the ‘conformity’ aspect of their model); we review this work in more depth in Section 2.8. A similar
approach is given in Buechel, Hellmann, and Pichler (2012), where DeGroot learning is applied to an
overlapping generations model in which parents transmit traits to their children. Receivers who deviate
from the opinion signals sent by senders — rebels — are discussed in Cao et al. (2011); see also the
modeling in Zhang et al. (2013) where such behavior is interpreted in a ‘fashion’ context. A model with
more general ‘ingroup/outgroup’ relationships and opposition toward outgroup members is described in
Eger (2013), which we discuss in more detail in Section 2.7. Multi-dimensional real opinion spaces have
been considered in Lorenz (2006) and a survey of generalizations of DeGroot models developed within
physicist communities (e.g., density-based approaches in place of agent-based systems) is provided by
Lorenz (2007). Groeber, Lorenz, and Schweitzer (2013) provide ‘dissonance minimization’ as a general
microfoundation of a variety of heterogenous DeGroot-like opinion dynamics models.

Concerning DeGroot models with endogenous weight formation, one pattern of endogenous weight
formation that has been studied in the literature is weight formation based on a homophily principle,
in which agents assign positive weights to those individuals whose current opinions are ‘similar’ with
their own. In Hegselmann and Krause (2002) — an approach with many extensions such as Hegselmann
and Krause (2005), Hegselmann and Krause (2006), Douven and Riegler (2009a), Douven and Riegler
(2009b), and Douven and Riegler (2010) — this leads to very interesting patterns of opinion formation in
which, most prominently, the paradigms of plurality, polarization and consensus are observed, depending
on specific parametrizations; most importantly, the definition of similarity, i.e., whether individuals are
tolerant or not toward other opinions, affects which opinion pattern emerges. The model of Deffuant
et al. (2000) is identical in setup to the Hegselmann and Krause model, except that two randomly
determined agents, rather than all agents, update beliefs in each time step. Pan (2010) discusses a
homophily variant in which agents assign trust weights to other agents in proportion to agents’ current
opinion distance — rather than by thresholding, as done in the Hegselmann and Krause models and
in Deffuant et al. (2000) — which typically entails a consensus, in the limit. Homophily and DeGroot
learning is also investigated in Golub and Jackson (2012), where the relationship between the speed of
DeGrootian learning and homophily is discussed; in this model, homophily is — exogenously, however
— modeled by random networks where the link probability between different groups is non-uniform, and
is, in fact, higher between individuals of the same group. Endogenous weight formation typically implies
time-varying weight matrices as belief updating operators and mathematical results on corresponding
processes are, for instance, given in Lorenz (2005).

Recent empirical and experimental evidence on the validity of the DeGroot heuristic for learning in
social networks has been provided in, e.g., Chandrasekhar, Larreguy, and Xandri (2012) and Corazzini
et al. (2012). Interesting in our context is also the experiment by Lorenz et al. (2011), where individuals
are placed in a situation consistent with our setup: individuals observe their peers’ past beliefs (on
social/geopolitical issues) and may update their current opinions accordingly. In addition, truth on each
of the discussed topics becomes revealed, by the experimenter, after a certain fixed amount of time.

Social learning is also discussed in various other strands of literature besides those discussed, such
as in herding models (cf. Banerjee, 1992; Gale and Kariv, 2003; Banerjee and Fudenberg, 2004), where
agents usually converge to holding the same belief as to an optimal action. This conclusion generally
applies to the observational learning setting (cf. Rosenberg, Solan, and Vieille, 2006; Acemoglu, Dahleh,
et al., 2011), where agents are observing choices and/or payoffs of other agents over time and are updating
accordingly. See also the references and the discussion in Golub and Jackson (2010). General overviews
over social learning, whether Bayesian or non-Bayesian, whether based on communication or observation,
are, in the economics context, for example, given in Lobel (2000) and Acemoglu and Ozdaglar (2011). In
Acemoglu and Ozdaglar (2011), an extensive discussion of the ‘pros and cons’ of fully rational learning



CHAPTER 2. ENDOGENOUS OPINION DYNAMICS MODEL WITH BIASED AGENTS 65

models versus boundedly rational (most importantly, DeGroot-like) heuristics is provided.
As discussed in the introduction, group opinion and belief formation and decision making also has

a long history in psychology. A crucial difference between such models and models of social learning is
that, in the psychology studies and models, it is usually assumed, and even explicity demanded, for the
group of individuals to reach a consensus in the course of the discussion process. A general overview
over group decision making is given in Kerr and Tindale (2004) and other relevant literature, besides
that sketched in the introduction, is, for example, Mannes (2009) and Budescu et al. (2003).

2.3 Model

A finite set [n] = {1, 2, . . . , n} of n agents discusses a sequence X1, X2, X3, . . . of topics. Each agent
i = 1, . . . , n holds initial beliefs bki (0) ∈ S on issue Xk, where k = 1, 2, 3, . . . and where S is a convex set
that we may innocuously assume to be the whole of R. Moreover, each topic has a corresponding truth
µk ∈ S which denotes the ‘true evaluation’ of topic Xk. Agents update their beliefs on Xk by taking a
weighted average of all other agents’ beliefs, starting from initial beliefs:

bki (t+ 1) =

n∑
j=1

W
(k)
ij bkj (t), (2.3.1)

where t = 0, 1, 2, 3, . . . and where W
(k)
ij denotes the weight (‘trust’) that agent i assigns agent j for topic

Xk; in Section 2.9, we let W
(k)
ij also depend on time t, i.e., W

(k)
ij = W

(k)
ij (t). We let the limiting beliefs

of agent i for issue Xk be denoted by bki (∞). Moreover, we assume that weight matrix W(k) — which
we also interpret as a ‘learning matrix’, or, as a (social) network — is row-stochastic for every topic k,
that is,

∀i, j : 0 ≤W (k)
ij ≤ 1, and ∀i :

n∑
j=1

W
(k)
ij = 1,

which means that the weights that agents assign each other are normalized to unity; we furthermore
assume that weights carry over from one topic to another, as we explicate below. Crucially, we consider
an endogenous weight formation process where agents adjust the weights they attribute to other agents
based on the foundational principle of truth.

• If agent j has known truth µk for issue Xk (or, was ‘close enough’), then it seems natural for agent
i to increase his trust in j. Formally, we let

W
(k+1)
ij =

{
W

(k)
ij + δ · T (

∣∣N(bk(∞), µk)
∣∣) if

∥∥bkj (τ)− µk
∥∥ < η,

W
(k)
ij otherwise,

(2.3.2)

for all k ≥ 1; by ‖·‖, we denote the absolute distance and by |A| the cardinality of set A. Here,
N(bk(τ), µk) ⊆ {1, . . . , n} is the set of all agents i whose belief bki (τ) for Xk at time τ is within
an η-radius of µk and T : {1, . . . , n} → [0,∞] is a function for which we specify the following:
m1 ≤ m2 =⇒ T (m1) ≥ T (m2) (T is non-increasing in its argument; ‘knowing truth pays a
weakly larger trust increment the less people know it’; see our discussion below). The variable τ
models the relevant adjustment time point; we consider τ = 0 (‘adjusting based on initial beliefs’)
and τ = ∞ (‘adjusting based on limiting beliefs’). We take the variables η, with η ≥ 0, and δ,
with δ > 0, as exogenous variables. We also refer to the variable η as the agents’ tolerance since it
describes the interval within which agents are tolerant against deviations from truth.

Adjusting weights in case bkj (τ) is close to truth rather than exactly truth may also be interpreted
as a boundedly rational heuristic for agents who cannot assess truth with infinite precision. Note
that after adjusting weights as in (2.3.2), we renormalize weight matrices in order for them to
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satisfy the row-stochasticity condition, that is, with a slight abuse of notation, we let

W
(k+1)
ij ←

W
(k+1)
ij∑

j′W
(k+1)
ij′

,

after all n agents have adjusted weights as in (2.3.2).

Discussion

Our endogenous DeGroot model appears quite simple and natural — we let agents adjust the network W
in a way that incorporates ‘past performance’: whenever an agent has been close enough to truth, agents
increase their trust for this agent by δ — except, possibly, for the weight adjustment time points and the
factor T (·). Concerning weight adjustment time points, the question is what is the relevant time point
that an agent’s belief should be (or is) compared to truth µk for some issue Xk. Note that, for any issue
Xk, there are infinitely many possible such time points — t = 0, 1, 2, 3, . . . — so this question admits
no straightforward answer. We consider two relevant time points, namely, the beliefs that agents hold
initially, at the beginning of communication, and the beliefs that agents hold in the limit, as time goes to
infinity; these beliefs are agents’ limiting beliefs, after communication on topic Xk has terminated. Both
time points have some intuitive appeal, as we think. Initial beliefs say something on an agent’s ‘innate
ability’, before learning from others, and limiting beliefs may possibly be a more realistic reference point
for weight adjustments if agents are perceived of as having ‘limited memory’ (limiting beliefs are the
‘most recent’ observations).10 Concerning the function T (·), our intuition is as follows. The larger the
group of agents who know the correct answer (or, as we consider as equivalent throughout, are ‘close
enough’ to truth) for a given topic — that is, the larger is the set of agents whose limiting beliefs are
correct — the smaller should be the trust weight increment that agents assign each other. Intuitively, the
number of agents who are correct for a topic may be indicative of the topic’s ‘difficulty’ or ‘hardness’.11

If T (x) = 0, for some x, then this means that the network is not adjusted if at least x agents know the
truth on any one topic.12 Consider Figure 2.2 for three typical exemplars of T (·), as we have in mind.

Figure 2.2: Three possible specifications of the function T in (2.3.2). Note that T is always non-increasing,
as we have defined. For example, the red function is T (·) = 1 and the dashed green function has T (n) = 0
and T (x) > 0 for x < n.

10Of course, it could be argued that an agent’s ‘average belief’, somehow weighted over time, might also be a quantity
that could be compared with truth µk.

11To make a crude example, ‘everyone’ may know what 3 + 3 is — so that correct knowledge of this answer may not
justify increased trust — but it took an Euclid to first discover the infinitude of the set of prime numbers.

12The condition T (x) = 0 may also be paraphrased as meaning that ‘if at least x agents know truth on any one topic,
then the network need not be changed’ — that is, ‘everything is fine’ if at least x (e.g., x = n) agents know truth.
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We also point out that, in our model, we logically differentiate between what is ‘innate knowledge’ (or,
simply, ‘ability ’) and what is socially learned from others in that we think of initial beliefs as capturing
ability and updating beliefs based on others’ beliefs as the social learning process. Finally, we remark that
we generally think of topics Xk as ‘of the same kind’ — that is, all of them are on sports or mathematics
or natural science or politics or the stock market, etc. — in order to justify why network weights should
carry over from one topic to another; see also our dicussion below.

Almost all throughout the work, we assume that agents are homogenous with respect to the tolerances
η, the weight increments δ, and adjustment time points τ .

2.4 A justification of our weight adjustment procedure

The choice of a rational agent

We now derive a (micro-founded) justification of our weight adjustment rule (2.3.2). We first assume
that agents i = 1, . . . , n have disutilities from not knowing truth for topic Xk, for k = 1, 2, . . .. More
precisely, we assume that agent i has utility function Ui from weight structure W(k) for issue Xk as

Ui(W
(k)) = Ui(W

(k);µk, b
k
1(0), . . . , bkn(0)) = −F

(
d(bki (∞), µk)

)
, (2.4.1)

where F : R≥0 → R≥0 is monotonically increasing and d is a metric — that is, in particular, d(a, b) = 0 if
and only if a = b — and where we assume that µk and initial beliefs bk1(0), . . . , bkn(0) are exogenous; also
note how bki (∞) depends on W(k) (and bk1(0), . . . , bkn(0)) via process (2.3.1). In other words, according
to utility function (2.4.1), a larger distance between i’s limiting belief bki (∞) and truth µk does not
lead to larger utility of agent i and when bki (∞) = µk, then agent i attains maximum possible utility.
For technical ease, we assume that d is the Euclidean distance and F has the simple quadratic form
F (z) = z2 such that

Ui(W
(k)) = −

∥∥bki (∞)− µk
∥∥2

= −
(
bki (∞)− µk

)2
.

Now, we assume that [W(k)]i, by which we denote the i-th row of W(k), are the endogenous variables
of agent i she wants to set in such a way as to maximize her utility Ui. Since agent i cannot affect the
weight structure choices of agents i′, with i 6= i′, we write Ui as a function of [W(k)]i, rather than W(k).
Hence, we write

Ui
(
[W(k)]i

)
= −

(
bki (∞)− µk

)2
.

Assume next that agents i = 1, . . . , n have ‘limited foresight’ or ‘finite horizon’ in that they cannot
foresee the dynamics of belief updating process (2.3.1) (which would also require knowledge of the other
agents’ weight choices) but that they take bki (1) as a reference variable, rather than bki (∞).

Assumption 2.4.1. Agents i = 1, . . . , n have limited foresight or finite horizon. They choose weights
[Wk(0)]i to maximize

Ui
(
[W(k)]i

)
= −

(
bki (1)− µk

)2
= −

( n∑
j=1

W
(k)
ij bkj (0)− µk

)2

.

Our next assumption is that initial beliefs bk1(0), . . . , bkn(0) are random variables.

Assumption 2.4.2. Initial beliefs bk1(0), . . . , bkn(0) are random variables.

From Assumption 2.4.2, it follows that agents become expected utility maximizers: they choose weights
[W(k)]i to maximize

Ei
[
Ui
(
[W(k)]i

)]
.

Our final assumption says that agents expect their own and other agents’ initial beliefs to be correct,
which we call the bona fides (“good faith”) assumption.
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Assumption 2.4.3. Agents i = 1, . . . , n are bona fide, that is,

Ei[bkj (0)] = µk, for all j = 1, . . . , n, and all k = 1, 2, 3, . . .

Now, we derive agents’ maximization problem under Assumptions 2.4.1 to 2.4.3. To this end, let X
denote the random variable

X =

n∑
j=1

W
(k)
ij bkj (0). (2.4.2)

With this notation, agents’ utility maximization problems become, under our named assumptions, for
each agent i = 1, . . . , n:

max
[W(k)]i

Ei
[
Ui
(
[W(k)]i

)]
= Ei

−( n∑
j=1

W
(k)
ij bkj (0)− µk

)2

 = −Ei
[
(X − Ei[X])2

]
s.t. W

(k)
i1 + . . .+W

(k)
in = 1,

(2.4.3)

since Ei[X] =
∑n
j=1W

(k)
ij Ei[bkj (0)] = µk

∑n
j=1W

(k)
ij = µk and where we assume row-stochasticity of

W(k). Now, Ei
[
(X − Ei[X])2

]
= Vari[X] and hence, agents’ utility maximization problems may be

rewritten as

max
[W(k)]i

−Vari[X] = min
[W(k)]i

Vari[X]

s.t. W
(k)
i1 + . . .+W

(k)
in = 1,

(2.4.4)

that is, agents strive to set weights W
(k)
i1 , . . . ,W

(k)
in such that Vari[X] is minimized subject to the row-

stochasticity condition on W(k). To simplify the solution to problem (2.4.4), we additionally assume
independence of bk1(0), . . . , bkn(0).

Assumption 2.4.4. The variables bk1(0), . . . , bkn(0) are independent random variables.

Finally, we assume that agents expect the variables b1j (0), b2j (0), b3j (0), . . . to be independent with
identical variances. If this were not the case, agents’ reliability across topics would vary so that statistical
regularities — inference from past performance to current performance — could not be exploited.

Assumption 2.4.5. Each agent i ∈ [n] expects the random variables b1j (0), b2j (0), b3j (0), . . . to be inde-
pendent random variables with identical variances, that is,

Vari[b
1
j (0)] = Vari[b

2
j (0)] = Vari[b

3
j (0)] = · · ·

for all j = 1, . . . , n.

Under Assumptions 2.4.4 and 2.4.5, Vari[X] may be written as

Vari[X] =

n∑
j=1

(W
(k)
ij )2 Vari[b

k
j (0)] =

n∑
j=1

α2
ijσ

2
ij ,

where we let, for short, αij = W
(k)
ij (here, we may omit the dependence on k since W

(k)
ij are optimization

variables that do not, intrinsically, depend on topic Xk) and σ2
ij = Vari[b

k
j (0)] (here, we may omit the

dependence on k due to Assumption 2.4.5). Thus, to solve problem (2.4.4) under Assumptions 2.4.4 and
2.4.5, each agent i = 1, . . . , n minimizes the ‘Lagrange’ function

Li(αi1, . . . , αin) =

n∑
j=1

α2
ijσ

2
ij − λ(

n∑
j=1

αij − 1) (2.4.5)
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for some ‘Lagrange multiplier’ λ. Via the first-order conditions, this leads to

αij =
λ

2σ2
ij

,

and from
∑n
j=1 αij = 1, we find that

n∑
j=1

λ

2σ2
ij

= 1 ⇐⇒ λ =
2∑n

j=1 σ
−2
ij

.

Thus, under Assumptions 2.4.1 to 2.4.5, a rational agent chooses weights W
(k)
ij that satisfy

W
(k)
ij = αij =

1
Vari[bkj (0)]∑n

j′=1

(
Vari[bkj′(0)]

)−1 ∝
1

Vari[bkj (0)]
, (2.4.6)

which is quite an intuitive result: the larger the variance of agent j’s estimate bkj (0) — or, more precisely,
what agent i thinks of this variance to be — the lower should the weight be that agent i assigns j, since
j’s initial belief tends to be ‘away from truth’ more frequently — or, more precisely, i expects j’s initial
belief to be so.

A comparison with the heuristic weight adjustment rule (2.3.2)

To compare the ‘optimal’ weight adjustment rule under Assumptions 2.4.1 to 2.4.5 with the heuristic
rule (2.3.2), note first that weight adjustment rule (2.3.2) amounts to (weighted) ‘counting’ of how often
a particular agent j has been in an η interval around truth µk, since, each time j has been within this
interval, the weight of i for j is increased by the term δ · T (·). Hence, denoting the weights defined via

rule (2.3.2) by W̃
(k)
ij for the moment and the remainder of this section, we have

W̃
(k)
ij ∝ R

k
j (η),

where Rkj (η) is the number of times agent j has been in an η-interval around truth within the first k
discussion topics,

Rkj (η) =
∣∣{h ∈ {1, . . . , k} | ∥∥bhj (τ)− µk

∥∥ < η}
∣∣.

Now, if Assumptions 2.4.2, 2.4.3, 2.4.4, and 2.4.5 hold and if τ = 0, then clearly, Rkj (η) is inversely

related to Vari[b
k
j (0)], for all j = 1, . . . , n, since if Rkj (η) is low, then i thinks that j has high variance

(around j’s presumed expected value of Ei[bkj (0)] = µk) and analogously if Rkj (η) is high. Hence, under

these assumptions, weight adjustment rule (2.3.2) entails weights W̃
(k)
ij which satisfy

W̃
(k)
ij ∝

1

Vari[bkj (0)]
.

Thus, to summarize, if

• Assumptions 2.4.1 to 2.4.5 hold and if,

• τ = 0 (adjusting based on initial beliefs),

then, heuristic weight adjustment rule (2.3.2) corresponds, by analogy, to an adjustment rule that a
rational agent would implement, under the named assumptions.
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Discussion

Some of the assumptions we have made require further discussion. Assumption 2.4.1, which says that
agents have limited foresight and want to minimize the distance between bki (1) and µk, rather than
between bki (∞) and µk, may not only be perceived as the choice of a boundedly rational agent. In
contrast, if agent i knows, or at least assumes, that all agents are similarly rational as her (and share
the same information structure, etc., that is, are perfectly homogeneous) — whence all agents are faced
with the same optimization problems to which they derive identical solutions [W(k)]i — then, in fact,
bk(1) = bk(∞) since W(k), for each k, is identical in each row and is row-stochastic (see Lemma 2.A.1 in
Appendix 2.A). So, under this prerequisite, agents could also be thought of as having ‘perfect foresight’,
knowing that bki (1) will equal bki (∞) anyways. Assumption 2.4.2 is innocuous, while Assumption 2.4.3 is
the bona fides assumption discussed in the introduction, which we thought of as being based on egocentric
biases. Next, Assumption 2.4.4, that agents’ initial beliefs are independent, is highly implausible, of
course: individuals go to the same or similar schools, are influenced by the same or similar media, etc.,
all of which may induce correlation in individuals beliefs (possibly even if we think of these beliefs as prior
to social communication); we make this assumption for technical ease, as otherwise deriving closed-form
solutions to the optimization problems in question may be quite challenging. Finally, Assumption 2.4.5
demands that topics are of the same general ‘area’, as we have indicated in Section 2.3, whence one may
expect individuals’ reliability (for this field of human expertise) to be predictable across a multitude of
topics. Forfeiting the assumption would mean to present agents with a problem where nothing can be
learned, in terms of adjusting the network structure W, across various topics.

We also mention that our above analysis has assumed that δ · T is strictly positive (for all or at least

infinitely many topics Xk), for, e.g., otherwise W̃
(k)
ij would not be proportional to Rkj (η). In Section 2.6,

we also consider the case when δ · T is zero for all but finitely many topics. We treat this case, which
allows us to derive wisdom results in certain circumstances even under the presence of biased agents, as
a special (or, ‘extreme’) case of our model that differs, however, from the choice a rational agent would
pursue, as we have sketched.

Illustration

To illustrate the relationship between W
(k)
ij as set by a (boundedly) rational agent and as set via (heuris-

tic) weight adjustment rule (2.3.2), consider the following exemplary situation. Let there be n agents, all
of whose initial beliefs bki (0) are normally distributed around µk, for all topics Xk. Assume that there
are two types of agents, L and H, with variances σ2

L and σ2
H , respectively, such that σ2

L < σ2
H . Let there

be nL agents of type L and nH agents of type H such that nL+nH = n. In other words, for each L-type
agent iL, we have, for all k = 1, 2, 3, . . .,

bkiL(0) ∼ N(µk, σ
2
L),

and, accordingly, for each H-type agent iH , we have

bkiH (0) ∼ N(µk, σ
2
H).

Thus, under Assumptions 2.4.1 to 2.4.5, a rational agent i would assign weights,

W
(k)
ij =

1

σ2
T

· 1

C
, (2.4.7)

where T ∈ {L,H}, depending on whether j is of type L or H, and where C is the constant C = nL
σ2
L

+ nH
σ2
H

.

In contrast, an agent who sets weights according to the rule (2.3.2), would set

W̃
(k)
ij ∝ Pr[

∥∥bkj (0)− µk
∥∥ < η] =

∫ η

−η

1√
2πσ2

T

exp(− x2

2σ2
T

) dx = 2

∫ η

0

1√
2πσ2

T

exp(− x2

2σ2
T

) dx, (2.4.8)

depending on whether j is of type T = L or T = H. In Figure 2.3, we plot the behavior of (2.4.7)
vs. (2.4.8) for specific values of σ2

L and σ2
H , namely σ2

L = 1 and σ2
H = 2. For the values of σ2

L and σ2
H
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discussed, the optimal rule under Assumptions 2.4.1 to 2.4.5 would accord total weight mass for L-types

of nL ·W (k)
ij = 3

4 (for j of type L), and total weight mass for H-types of nHW
(k)
ij = 1

4 (for j of type H).

In contrast, as the graphs show, if weights are set according to (2.4.8), then, W̃
(k)
ij is, for the L types,
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always lower than 3
4 , as the optimal rule would prescribe. Depending on η, W̃

(k)
ij ranges from 0.60, if η

is large, to about 0.68, for small η. The value for η large is obvious since if η is sufficiently large in size,

then each agent will receive identical weight W̃
(k)
ij , 1

n , and, hence, total weight mass for T -types is nT
n ,

for T ∈ {L,H}. The figure also shows the inverse relationship between W̃
(k)
ij and σ2

T (for T = L, in this

case; Figure 2.3 (b)), the closeness of W̃
(k)
ij to ‘optimality’ (Figure 2.3 (c)), and a comparison between

the theoretic value W̃
(k)
ij is proportional to, Pr[

∥∥bkj (0)− µk
∥∥ < η], and actual realizations of W̃

(k)
ij as a

function of δ and T (Figure 2.3 (d); cf. Equation (2.3.2)).
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2.5 Notation and definitions

We introduce the following helpful notation and definitions.

Definition 2.5.1. Let any ε ≥ 0 be fixed. We call an agent i ε-intelligent for (topic) Xk if i’s initial
belief on Xk is (ε) ‘close to truth’, i.e.,

∥∥bki (0)− µk
∥∥ < ε. We call i ε-intelligent, if i is intelligent for all

topics Xk.

This definition captures the idea that an agent’s initial beliefs, which we think of as not influenced
by peers (or their beliefs), express something innate to agent i, his hidden ability or, simply, intelligence.
However, we say nothing here on how i has arrived at his initial beliefs, e.g., whether it was through
hidden ability in a proper sense or, for instance, ‘merely’ through guessing. We also remark that the
concept of ε-intelligence (or ε-wisdom, as we define below) is clearly related to our weight adjustment
rule; in particular, for given tolerance η, agents increase their weight for an agent j if this agent is
ε-intelligent (or ε-wise) for a topic Xk and for all ε ≤ η.

When i is ‘close to truth’ in the limit of the DeGroot learning process, we call i wise.

Definition 2.5.2. We call an agent i ε-wise for (topic) Xk if i’s limit belief on Xk is ‘close to truth’,
i.e.,

∥∥bki (∞)− µk
∥∥ < ε. We call i ε-wise, if i is wise for all topics Xk.

We also introduce stochastic analogues of the above definitions. If an agent has initial beliefs stochas-
tically centered around truth for a topic, we call the agent stochastically intelligent for this topic.

Definition 2.5.3. We call an agent i stochastically intelligent for (topic) Xk if i’s initial belief on Xk

is ‘stochastically centered around truth’, i.e., bki (0) = µk + σik, where σik is some individual and topic-
specific white-noise variable. We call i stochastically intelligent, if i is stochastically intelligent for all
topics Xk.

We omit the corresponding definition for wisdom since we rarely make use of a concept of ‘stochastic
wisdom’ in the remainder of this work.

Next, fix a level of intelligence or wisdom ε ≥ 0. For convenience, let us denote the open ε-interval
around truth, within with agents are considered ε-intelligent (or ε-wise), by Bk,ε and its complement by
Bck,ε. Formally, we have:

Definition 2.5.4.

Bk,ε := (µk − ε, µk + ε),

Bck,ε = S\Bk,ε.

Below, in the main sections of our work, our principal modeling perspective — although we may
occasionally deviate from or slightly generalize this perspective — is the notion of two groups of agents,
N1 and N2 with N1 ∪N2 = [n] and N1 ∩N2 = ∅, one of whose initial beliefs are unbiased — group N1’s
— and the other’s initial beliefs are biased, whereby we define bias as

βi,k =
∥∥E[bki (0)]− µk

∥∥ .
Hence, for members i of N1, we assume that βi,k = 0 and for members i of N2, we assume that βi,k > 0
for all topics Xk. In addition, we think of the two groups of agents as having independent and identical
distributions of initial beliefs, with distribution functions FNl,k(A) = Pr[bki (0) ∈ A], for l = 1, 2 and
A ⊆ S, where, of course, identical distribution refers to within group and independence refers to both
within and across group relations. Finally, for fixed level of tolerance η ≥ 0, we assume that FNl,k(Bk,η)
does not depend upon k, that is, FNl,k(Bk,η) = FNl,k′(Bk′,η), for all k, k′. This means that agents’
probability of being within an η-interval around truth — for initial beliefs — is the same across topics.
This assumption is very similar, in spirit, to Assumption 2.4.5 and captures predictability of agents. We
also think of this invariant probability as denoting an agent’s ability or reliability.

To conclude this section, we introduce notation regarding convergence (and consensus) of our en-
dogenous opinion dynamics paradigm.
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Definition 2.5.5. Let k ≥ 1 be arbitrary. We say that W(k) is convergent for opinion vector b(0) ∈ Sn
if limt→∞(W(k))tb(0) exists. Moreover, we say that W(k) induces a consensus for opinion vector b(0)
if W(k) is convergent for b(0) and limt→∞(W(k))tb(0) is a consensus, that is, a vector c ∈ Sn with all
entries identical.

Rather than saying that W(k) converges, we may occasionally also say that beliefs converge (under
W(k)) or that our DeGroot learning / opinion dynamics paradigm converges. We also mention that we
typically assume matrix W(1) to be the n×n identity matrix (in the absence of further information, agents
follow their own signals), which sometimes facilitates analytical derivations, but we also consider more
general forms of the matrix W(1), where we find that such a generalization is worthwhile mentioning.

Throughout our work, we assume that weight matrices W(k) are row-stochastic, that is,

n∑
j=1

[W(k)]ij = 1,

for all i ∈ [n]. We denote the entries of an arbitrary matrix A by Aij or [A]ij . We denote by In the n×n
identity matrix and by 1n the vector of n 1’s, i.e., 1n = (1, . . . , 1)ᵀ. We may omit the dimensionality if
it is clear from the context.

2.6 The standard DeGroot model

In the subsequent sections, we derive a few results regarding the standard DeGroot learning model under
our endogenous weight formation paradigm. First, we show that, in our setup, agents almost always
reach a consensus (Proposition 2.6.1 and the subsequent remark), that is, for almost all topics Xk, under
very mild conditions. Then, in Section 2.6.1, we show that if agents are unbiased and receive initial
belief signals that are centered around truth, then agents’ beliefs converge to truth for topics Xk, as
n, k → ∞, irrespective of whether agents adjust weights based on limiting or on initial beliefs. Next,
in Section 2.6.2, we illustrate that agents may be arbitrarily far off from truth as the number of biased
agents involved in the opinion dynamics process becomes large, thus demonstrating that crowd wisdom
may fail under these circumstances. For the situation when T (n) = 0, we also give sufficient conditions
on when crowd wisdom does not fail, even under the presence of biased agents. In Section 2.6.3, we
discuss weights on own beliefs as a (simple) extension of the classical DeGroot learning paradigm and as
discussed by DeMarzo, Vayanos, and Zwiebel (2003).

We start our discussion with a theorem given in the original DeGroot paper (DeGroot, 1974), which
helps us determining when our endogenous opinion dynamics process leads agents to a consensus.

Theorem 2.6.1. If there exists a positive integer t such that every element in at least one column of
the matrix Wt is positive, then W induces a consensus for any vector b(0) ∈ Sn.

Theorem 2.6.1 can be used in a straightforward manner to derive conditions, in our setup, under
which agents reach a consensus. Namely, during the course of dicussing issues X1, X2, X3, . . ., as long
as no agent has been η-intelligent (resp. η-wise), agents do not adjust their weights to other agents,
and, consequently, agents reach a consensus if and only if W(1) induces a consensus. At the first time
point that some agent has been η-intelligent (resp. η-wise), all agents subsequently adjust weights for
this agent, and, hence, (at least) one column of the respective weight matrix is strictly positive for the
subsequent topic. Hence, for this topic, all agents reach a consensus. But note that this column remains
positive for all weight matrices corresponding to discussion topics discussed thereafter (as can easily be
shown inductively) because even redistribution of weight mass to other agents, via weight normalization,
cannot make a matrix entry zero once it has been positive. Now, we formalize these simple ideas. Then,
we generalize to the setting when agents have individualized tolerances ηi.

Let Ai be the set of time points agent i is η-intelligent (resp. η-wise) for some topic Xk,

Ai = {k ∈ N |
∥∥bki (τ)− µk

∥∥ < η} ⊆ N,
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where τ = 0 (resp. τ =∞) and let ai be the first time that i is η-intelligent for some topic Xk,

ai = minAi.

Then, we have the following proposition, for which we assume that T (·) > 0 on its whole domain. This
assumption is innocuous here; if it does not hold, the proposition may easily be adjusted to account for
the different setup.

Proposition 2.6.1. Let η ≥ 0 be fixed. Let τ = 0 (resp. τ = ∞). Let r = mini∈[n] ai be the earliest
time point that some agent is η-intelligent (resp. η-wise) for topic Xr. (a) Then agents reach a consensus
for all topics Xk with k > r, independent of their initial beliefs. (b) For topics 1, . . . , r, agents reach a
consensus if and only if W(1) induces a consensus.

Proof. (a) By the proposition, we know that some agent i is η-intelligent (resp. η-wise) for topic Xr.
Accordingly, agents increase their weight to i by δ ·T (·) > 0 at time r+ 1. Hence, weight matrix W(r+1)

has a strictly positive column and so do, in general, have all matrices W(k), for k > r. By Theorem
2.6.1, agents thus reach a consensus for all issues Xk, with k > r.

(b) For issues X1, . . . , Xr, no weight adjustments are made, whence W(1) = · · · = W(r) and a
consensus is reached if and only if W(1) induces a consensus.

Remark 2.6.1. Assume, for the moment, that agents have individualized tolerances ηi. Then part (a)
of Proposition 2.6.1 is true if we replace Ai as above by

Ai = {k ∈ N |
∥∥bki (τ)− µk

∥∥ < min
j∈[n]

ηj},

and we define ai as above as ai = minAi.

Remark 2.6.2. Consider τ = 0 for this remark. If initial beliefs are random variables, then r, as specified
in Proposition 2.6.1, is a random variable (which we could consider a ‘stopping time’). Accordingly, its
distribution might be of interest. Assuming agent i’s initial opinions for each topic Xk to be distributed
with distribution function Fi,k, that is, P [bki (0) ∈ A] = Fi,k(A), for A ⊆ S, we have that the probability
that at least one agent i is η-intelligent for topic Xk is given by pk,η = 1 −

∏
i∈[n] Fi,k(Bck,η), due to

independence of agents’ initial beliefs. Then, if Fi,k(Bck,η) does not depend on Xk but only on η, we have
that r has a geometric distribution with probability pη (where we omit, in the notation, the dependence
on k due to our assumption), that is,

P [r = ν] = (1− pη)ν−1pη, for ν = 1, 2, 3, . . .

From the specification of pη, we thus see that if Fi,k(Bck,η) < 1 for all i, then pη → 1 as n → ∞.
Accordingly, the distribution of r converges to the degenerate distribution with P [r = 1] = 1 and
P [r 6= 1] = 0. Thus, in this situation, agents ‘almost always’ — that is, with possibly only finitely many,
namely, one, exceptions, topic X1 — reach a consensus for topics Xk, for k = 1, 2, 3, . . ..

We also find the next simple result which states that if all agents start with initial beliefs within a
precision of ε around truth, then agents will also end up with limiting beliefs with level of wisdom of ε,
provided that agents’ beliefs convergence at all, as time goes to infinity.

Proposition 2.6.2. Let level of intelligence ε ≥ 0 be fixed. If all agents are ε-intelligent for Xk and the
DeGroot learning process (2.3.1) converges, then all are ε-wise for topic Xk.

Proof. This simply follows from the fact that the interval Bk,ε = (µk − ε, µk + ε) is a convex set and
weights are always row-stochastic in our model setup. Thus, if all agents start their beliefs in Bk,ε, limit
beliefs will also be in Bk,ε, provided that they converge.

As we have seen in Proposition 2.6.1, whether or not the DeGroot learning process (2.3.1) converges on
the first r topics depends on the initial weight matrix W(1). Thereafter, convergence (even to consensus)
is guaranteed. Hence, using Proposition 2.6.2, we obtain:

Corollary 2.6.1. Let level of intelligence ε ≥ 0 be fixed. If all agents are ε-intelligent (i.e., for all topics
Xk), then all agents are ε-wise for all topics Xk, with k > r, where r is defined as in Proposition 2.6.1.
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2.6.1 Unbiased agents

In this setup, we assume that all agents receive initial signals

bki (0) = µk + εik, (2.6.1)

where µk is truth for issue Xk and εik is white noise (i.e., with mean zero and independent of other
variables) with variance σ2

i = Var[εik] (note that we assume the variance to be independent of the issue
Xk). As throughout, we assume agents’ initial signals to be independent.

We consider first the situation when agents adjust weights based on limiting beliefs, i.e., τ = ∞. In
the next proposition, we show that agents become ε-wise in this situation (for any ε > 0), in the limit as
both n, population size, and k, which indexes topics, go to infinity. The intuition behind this result is
simple: since, in our setup, agents tend toward a consensus (see Proposition 2.6.1), agents will generally
all be jointly η-wise (where η is agents’ tolerance) or not. Then, since agents adjust based on limiting
beliefs, agents receive the same increments (or not) to their weight structure, so that, as k becomes large,
W(k) is the matrix with entries 1

n , approximately. Then, the law of large number implies convergence
to truth, as n becomes large, since initial beliefs are stochastically centered around truth by (2.6.1).

Proposition 2.6.3. Let η ≥ 0 be fixed. Assume that agents’ initial beliefs are centered around truth in
the form (2.6.1). Moreover, assume that agents initially follow their own beliefs, that is, W(1) is the n×n
identity matrix In. Finally, assume that agents adjust weights based on limiting beliefs, i.e., τ =∞. Let
T (·) > 0. Then, as k, n→∞, all agents become ε-wise for topics Xk, for all ε > 0, almost surely.

Proof. As before, let r = mini∈[n] ai be the first time point that one agent is η-intelligent for topic Xr

(which is the same as η-wise for topic Xr, as W(1) is the n × n identity matrix, by assumption). For
simplicity, assume first that, for topic Xr, all agents are η-intelligent (and hence, η-wise); we then treat
the more general case where only some agents are η-intelligent for Xr as an analogous situation. In this
case, W(r+1) looks as follows, after weight adjustments,

W(r+1) =
1

1 + nδ̃


1 + δ̃ δ̃ . . . δ̃

δ̃ 1 + δ̃ . . . δ̃
... · · ·

. . .
...

δ̃ δ̃ . . . 1 + δ̃

 ,

where we let δ̃ = δ · T (·). Consider any matrix A of the form

A =


β α . . . α
α β . . . α
... . . .

. . .
...

α α . . . β

 (2.6.2)

such that β + (n− 1)α = 1 (that is, A is row-stochastic), with 0 < α, β < 1. In Appendix 2.A, we show
that matrix A has one eigenvalue λ = 1, to which corresponds an eigenvector c = (c, . . . , c)ᵀ, and (n−1)
identical eigenvalues of absolute size smaller than 1. Moreover, since A is symmetric, it is diagonalizable
of the form A = UVUᵀ, where V is a diagonal matrix that contains the eigenvalues of A on the diagonal
and U is orthonormal, that is, UUᵀ = In; without loss of generality, assume that the eigenvalues in V
are arranged by size, i.e., V11 = 1 > V22 = · · · = Vnn and the corresponding eigenvectors are located in
the respective columns of U, i.e., the first column of U is the vector c. We have

At = UVtUᵀ.

As t→∞, V converges to the matrix with one entry equal to 1 and all other entries equal to zero (due
to the eigenvalue structure of A). Thus, we then have

lim
t→∞

At =
[
c 0 . . . 0

]
Uᵀ =

[
c 0 . . . 0

]


cᵀ

cᵀ2
...

cᵀn

 = c2

1 . . . 1
...

. . .
...

1 . . . 1

 ,
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where c2, . . . , cn are the eigenvectors corresponding to eigenvalues λ2 to λn. Moreover, since A is row-
stochastic, At is row-stochastic for every t, and, accordingly, limtA

t is row-stochastic. Therefore c2 = 1
n .

In other words, if each agent is η-wise for topic Xr, then for topic Xr+1, we have

br+1(∞) = lim
t→∞

(W(r+1))tbr+1(0) =

 n∑
j=1

1

n
br+1
j (0)


1

...
1

 =

(∑n
j=1 b

r+1
j (0)

n

)1
...
1

 . (2.6.3)

Now, for all topics Xk, with k > r, agents reach a consensus by Proposition 2.6.1. Hence, agents are
either all jointly η-wise or none of them is, for all k > r. Therefore, all weight matrices W(k), for k > r,
have the form (2.6.2) (either all entries receive an increment of δ̃ and are then renormalized, or none
receives an increment). Hence, agents’ limiting beliefs are always weighted averages of their initial beliefs,
where the weights are 1

n . Applying the law of large numbers then implies that agents become ε-wise as
n→∞ for any ε > 0 almost surely, for all k > r.

For the more general case when not all agents are η-wise for topic Xr, one can show that agents’
limiting beliefs for topic Xr+1 are (uniform) averages of the initial beliefs of the agents who were η-wise
for Xr, rather than averages of all agents’ initial beliefs. As topics progress, either all agents are jointly
η-wise or they are not (since agents always reach a consensus for topics Xk, with k > r). Hence, since
agents adjust weights based on limiting beliefs, the entries in the weight matrices W(k) all either receive
jointly an increment of δ̃ or not (in fact, increments of δ̃ are added infinitely often, almost surely, as
k → ∞ since initial beliefs are centered around truth). Hence, W(k) tends toward a matrix with all
entries 1

n as k →∞ and the law of large numbers takes care for almost sure convergence.

Next, we state that Proposition (2.6.3) holds true also if agents adjust weights based on initial beliefs.
This is understandable: if agents adjust weights based on limiting beliefs, weights converge to 1

n as k
increases. However, this weighting structure is not optimal, as it ignores the different variances of agents’
initial beliefs, but agents’ final beliefs still converge to truth in the limit. Hence, if agents set weights
‘closer to optimality’ as they do when they adjust based on initial beliefs (cf. Section 2.4), they should
certainly also converge to truth. We prove the proposition more formally by referring, in Appendix 2.A,
to results developed in Golub and Jackson (2010), which generalize the ‘ordinary’ law of large numbers.

Proposition 2.6.4. Let η ≥ 0 be fixed. Assume that agents’ initial beliefs are centered around truth
in the form (2.6.1). Moreover, assume that agents initially follow their own beliefs, that is, W(1) is the
n× n identity matrix In. Finally, assume that agents adjust weights based on initial beliefs, i.e., τ = 0.
Let T (·) > 0. Then, as k, n→∞, all agents become ε-wise for topics Xk, for all ε > 0, almost surely.

2.6.2 Biased agents

The case T (n) = 0

In the biased agent setup, we start with the following conditions. Fix a level of wisdom ε > 0, with ε ≤ η,
agents’ tolerance. Let there be n = n1 + n2 agents, and denote by N1 and N2 the respective agent sets
such that [n] = N1 ∪ N2. The agents in N1 are ε-intelligent and we think of them as having unbiased
initial beliefs about any topic Xk; in particular, we think of their initial beliefs as distributed according
to µk + εik, where εik is white noise, appropriately restricted such that µk + εik ∈ Bk,ε. Conversely, let
the n2 agents in N2 have initial beliefs distributed according to a random variable Zk (that depends on
topic Xk) with distribution function FZk(A) = P [bki (0) ∈ A], for A ⊆ S (in particular, agents in N2 all
have the same distribution of initial beliefs). Assume that FZk(A) > 0 for all non-empty intervals A ⊆ S.
We think of the agents in N2 as biased in that it holds that βk = ‖E[Zk]− µk‖ > 0 for all topics Xk.
Finally, assume that T (m) > 0 for all m < n and T (n) = 0 and let W(1) be the n × n identity matrix.
For short, we will also refer to the n2 agents in N2 as ‘biased’ agents.

Our first result, concerning weight adjustment at τ = ∞, states that agents’ limiting beliefs, in
expectation, in this context will be a mixture of truth µk and E[Zk] unless no biased agent ‘guesses’
truth for topic X1, the first topic to be discussed, in which case all agents reach level of wisdom ε for
all topics Xk. In other words, if a biased agent is true for the initial topic X1, then agents will always
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mix truth with a biased variable. That agents do not mix when no biased agent is true for X1 crucially
depends on the condition T (n) = 0. Namely, if no biased agent is close enough to truth for topic X1,
only the ε-intelligent agents will be, such that, for topic X2, agents only increment weights to agents in
N1; consequently, as we show, for topic X2, limiting consensus beliefs will be uniform means of these
agents’ beliefs so that all agents are ε-wise for X2; but, since T (n) = 0, no more weight adjustments
occur whatsoever, so that all agents are ε-wise for all topics Xk to come. We also remark that if agents’
limiting beliefs are mixtures of truth and a biased variable, this does not mean that agents would not be
ε-wise for a certain topic (which depends both on the biased agents’ bias and on ε); it solely means that
agents mix truth with something that distracts them away from truth.

For the proof of the result, we make use of the insight that if someone is wise (or intelligent) at a
more refined level, he is also wise (or intelligent) at a coarser level; the following lemma, which restates
this, is self-explanatory and needs no proof.

Lemma 2.6.1. Let 0 ≤ ε1 ≤ ε2. If an agent i is ε1-wise (ε1-intelligent) for some topic Xk, then she is
also ε2-wise (ε2-intelligent) for Xk.

In the following proposition, ε1 will be ε, the level of wisdom to be obtained, and ε2 will be η, agents’
tolerance.

Proposition 2.6.5. Let the weight adjustment time point be τ =∞. Let tolerance η ≥ 0 be fixed and
fix a level ε ≥ 0 of wisdom, with ε ≤ η.

Under the outlined conditions, if Nη(b1(τ), µk) contains only unbiased ε-intelligent agents — that
is, Nη(b1(τ), µk) = N1 — then all agents become ε-wise for all topics Xk, with k > 1. If Nη(b1(τ), µk)
contains also agents from the set N2,13 then agents’ limiting beliefs, in expectation, are given by
λZ E[Zk] + λµµk, for all topics k > 1, where λZ and λµ are coefficients such that λµ = n1

|Nη(b1(τ),µk)| and

λZ =
|Nη(b1(τ),µk)∩N2|
|Nη(b1(τ),µk)| so that λµ + λZ = 1.

Proof. For convenience, we consider the situation when only one agent, i = 1, is ε-intelligent. The more
general case is a straightforward extension of our arguments. We also assume that agent i = 1 holds
beliefs bki (0) = µk, for all k ≥ 1.

Let Nη(b1(τ), µk) contain only ε-intelligent agents. Since W(1) is the identity matrix, the limiting
beliefs of agents 1, . . . , n on topic X1 are as follows:

b11(∞) = µ1, b
1
2(∞) = b12(0), . . . , b1n(∞) = b1n(0).

Moreover, since initial beliefs of the agents in N2 are in Bck,η, the agents in N2 are, consequently, also
not η-wise for topic X1, in contrast to the ε-intelligent agent, who is η-wise for topic X1. Thus, the
weight structure at the beginnning of discussion of topic X2 looks as follows, after weight adjustment
and renormalization

W(2) =
1

1 + δ̃


1 0 0 · · · 0

δ̃ 1 0 · · · 0
... · · ·

. . .

δ̃ 0 0 · · · 1

 ;

recall our convention that δ̃ = δ · T (·). Limiting beliefs for topic X2 are thus given by

b2(∞) = lim
t→∞

(W(2))tb2(0),

where the initial belief vector b2(0) is (µ2, b
2
2(0), . . . , b2n(0))ᵀ. It is not difficult to see that powers of any

13But not all of them. If Nη(b1(τ), µk) = [n], then the set Nη(b1(τ), µk) should be replaced by Nη(b2(τ), µk), etc.



CHAPTER 2. ENDOGENOUS OPINION DYNAMICS MODEL WITH BIASED AGENTS 78

matrix with structure


1 0 0 · · · 0
α 1− α 0 · · · 0
... · · ·

. . .

α 0 0 · · · 1− α

 have the form


1 0 0 · · · 0
α 1− α 0 · · · 0
... · · ·

. . .

α 0 0 · · · 1− α


t

=


1 0 0 · · · 0

α
∑t−1
i=1(1− α)i (1− α)t 0 · · · 0

... · · ·
. . .

α
∑t−1
i=1(1− α)i 0 0 · · · (1− α)t

 .

For 0 < α ≤ 1, the right-hand side of the last equation obviously converges to the matrix with all entries
identical to zero, except for the first column, which consists of n entries 1. Hence, by this fact, b2(∞) is the
vector with all entries µ2 and all agents are, consequently, ε-wise for topic X2, and, thus, also η-wise (by
Lemma 2.6.1). Since in this case, it holds that

∣∣Nη(b2(∞), µ2)
∣∣ = n, we have T (

∣∣Nη(b2(∞), µ2)
∣∣) = 0 by

assumption, so that agents do not adjust weights for topic X3 (more precisely, the adjustment increment
is zero). Hence, W(3) = W(2), and agents will also be ε-wise for topic X3 since agent i = 1 is ε-intelligent
for X3. Inductively, this holds for all Xk, with k > 1.

Now, assume that at least one agent in N2 happens to know truth for topic X1 (that is, his initial
belief is within an η radius of truth), which may always occur since FZk(A) > 0 for all intervals A ⊆ S
by assumption. For convenience, we assume that exactly one agent in N2, say, agent 2, happens to know
truth for topic X1. Then, at the beginning of the discussion of topic X2, agents increase their weights
for agents 1 and 2, resulting in the following structure:

W(2) =
1

1 + 2δ̃


1 + δ̃ δ̃ 0 0 · · · 0

δ̃ 1 + δ̃ 0 0 · · · 0

δ̃ δ̃ 1 0 · · · 0
...

... · · ·
. . .

δ̃ δ̃ 0 0 · · · 1


Again, limiting beliefs for topic X2 are then given by

b2(∞) = lim
t→∞

(
W(2)

)t
b2(0).

It is not difficult to see that powers of matrices with structures as in the given W(2) converge to the
matrix with the first two columns being 1

21n and the remaining columns are zero vectors. Thus, limiting
beliefs of all agents are just the average of the first two agents’ initial beliefs. This implies a limiting
consensus such that all agents are either jointly η-wise or not η-wise for topic X2. If all are η-wise, no
weight adjustments occur for topic X3 (since T (n) = 0), but if they are not η-wise, no weight adjustments
occur as well (no one was right). Thus, as before, W(2) = W(3) = W(4) = · · · , such that for all topics
to come, limiting beliefs of all agents will always be averages of the first agent’s (who is ε-intelligent)
and the second agent’s (who was just lucky for topic X1) initial beliefs. Hence, in expectation, agents’
limiting (consensus) beliefs will be

1

2
E[Zk] +

1

2
µk.

The more general forms of λZ and λµ can be straightforwardly derived in an analogous manner in the
more general setting.

Example 2.6.1. We illustrate Proposition 2.6.5 in Figure 2.4, where we let S = [0, 1], µk = 0 for all
k ≥ 1, [n] = {1, . . . , 50}, N1 = {1} and FZk is the random uniform distribution on S, ε = 0 and η = 0.2.
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Figure 2.4: Description in text; also τ = ∞, δ = 0.2 and T (m) = 1 for m < n and T (n) = 0. For each
topic, we plot discussion rounds t = 0, 1, 2, . . . , 20. Left: Nη(b1(∞), µ1) = {1} = N1 (ε-intelligent agent
in red) such that all agents are ε-wise for all topics Xk, with k > 1. Right: Nη(b1(∞), µ1) = {1, 2}
contains also one biased agent (in green) such that limiting beliefs of agents are mixtures of truth and
Zk.

Remark 2.6.3. As an application of Proposition 2.6.5, consider the situation when the number n of
agents goes to infinity. Then, if the fraction n2

n of agents in N2 converges to zero, agents become ε-
wise, in the limit, as n → ∞. Namely, first, the coefficient λZ converges to zero in this case since
λZ ≤ n2

n1
= n2

n−n2
, so that agents’ expected consensus is indeed µk as n → ∞. Moreover, not only do

agents’ limiting beliefs converge to µk in expectation, but agents become indeed ε-wise in the limit, as
the support of the distribution of the ε-intelligent agents’ initial beliefs is Bk,ε.

As examples of n2

n converging to zero, of course, if the number n2 remains constant as n → 0, then
n2

n goes to zero. But even if, for example, n2 grows as in
√
n, all agents finally become ε-wise.

Proposition 2.6.5 may be restated in the following way; agents’ limiting beliefs, in expectation, are
given by λZ E[Zk] + λµµk, where λZ = 0 if Nη(b1(0), µk) = N1. We can then determine the probability
that λZ = 0.

Corollary 2.6.2. Under the conditions of Proposition 2.6.5, with probability exactly FZk(Bck,η)n2 > 0,
we have λZ = 0.

Proof. The event that the n2 biased agents’ initial beliefs b1i (0) are in Bck,η is, by the iid property,
FZk(Bck,η)n2 .

Remark 2.6.4. According to the corollary, the probability that λZ = 0 is strictly positive but decreasing
as the number of biased agents increases. Hence, as n2 becomes large, agents’ limiting beliefs are very
likely mixtures of truth µk and E[Zk], a value that is different from truth.

Remark 2.6.5. We may consider the setup of Proposition 2.6.5 as a ‘type inference’ problem. What
the proposition says and shows is that, since agents adjust their weights based on limiting beliefs, they
cannot infer the intelligent agents once a biased non-intelligent agent has guessed truth because agents
always reach a consensus in our situation (cf. also Proposition 2.6.1). Thus, the intelligent agents cannot
properly signal their type in this case because all agents’ limiting beliefs are indistinguishable.

Now, consider the exact same situation as in Proposition 2.6.5, except that agents adjust weights
based on initial beliefs, i.e., τ = 0. In this situation, a sufficient condition for wisdom is that agents
find truth sufficiently valuable, i.e., δ is sufficiently large. In this case, wisdom, in the limit as k → ∞,
obtains almost surely, namely, all that is required is that only the ε-intelligent agents in N1 are initially
true for some topic Xk.

Proposition 2.6.6. Let the weight adjustment time point be τ = 0.
Under the conditions as in Proposition 2.6.5, if δ is sufficiently large, then, almost surely, there exists

a (time point) M ∈ N such that all agents are ε-wise for all topics Xk, with k > M .
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Figure 2.5: Description in text; also τ = 0, δ = 100 and T (m) = 1 for m < n and T (n) = 0. For each
topic, we plot discussion rounds t = 0, 1, 2, . . . , 5. For topic M = 5, we have Nη(bM (0), µM ) = N1 such
that all agents are ε-wise for all topics Xk, with k > M .

Proof. Let M be the first time point that (1) only ε-intelligent agents in N1 happen to know truth,
initially, for topic XM , that is, bMi (0) ∈ Bk,η for all i ∈ N1 and no i ∈ N2; and, (2) not all agents are

η-wise for XM (such that T (·) > 0). Then, weight adjustment at M + 1 will add δ̃ > 0 to the weights
of the ε-intelligent agents in N1. If δ̃ is sufficiently large, after normalization, weights for the non-
intelligent agents become arbitrarily small and (arbitrarily close to) uniform for the ε-intelligent agents.
In particular, δ may be so large that all agents’ beliefs bM+1

i (1) lie in Bk,ε. Since this is a convex set and
weight matrices are row-stochastic, beliefs will remain in Bk,ε for all time periods t; hence, agents will be
ε-wise in the limit for topic XM+1, and, consequently, also η-wise. Since T (n) = 0, no more adjustments
will occur after time point M + 1 and all agents become ε-wise for all topics Xk, with k > M , since their
weights are now (sufficiently close to) uniform for the ε-intelligent agents in N1.

Example 2.6.2. We illustrate Proposition 2.6.6 in Figure 2.5, where we let S = [0, 1], µk = 0 for all
k ≥ 1, [n] = {1, . . . , 50}, N1 = {1} and FZk is the random uniform distribution on S, ε = 0 and η = 0.05.

Remark 2.6.6. To summarize, the intelligent agents in N1 can now correctly signal their type. All that
is required is that only ε-intelligent agents in N1 happen to know truth for some topic, in which case
they will receive such a large weight increment that they lead society to ε-wisdom; then, no more weight
adjustments occur because the ‘right guys’ have been identified.

Remark 2.6.7. In our current setup, the difference between weight adjustment at τ = 0 vs. at τ =∞ is
as follows. While adjusting at τ = 0 leads agents to ε-wisdom almost surely provided that they find truth
sufficiently valuable, that is, δ is large enough; updating at τ = ∞ leads agents to ε-wisdom provided
that biased agents do not know (or, perhaps, ‘guess’) truth for topic X1. The latter condition is difficult
to satisfy if we assume that the number of biased agents becomes large, while the condition of sufficiently
large δ also depends on population size n and, in particular, on n2, the population size of the biased
agents. In other words, if T (n) = 0, we can specify sufficient conditions for wisdom even under the
presence of biased agents, but these are rather challenging.

The case T (·) > 0

Now, we consider the same setup as in the last subsection, except that we assume that T (·) > 0 on its
whole domain. In this case, agents continuously adjust their weights to other agents, which is also the
rational behavior of an agent who assumes the conditions outlined in Section 2.4; recall our previous
discussion.

We consider a slightly more general situation here than in the last subsection in that we allow each
agent to have initial beliefs distributed according to individualized distribution functions, rather than to
assume groups with identical distribution functions; the more restrictive setting is then a special case of
our generalization. Accordingly, assume that agent i’s initial belief for topic Xk is distributed according
to random variable Zi,k with distribution function Fi,k(A) = Pr[Zi,k ∈ A] for all A ⊆ S and all topics
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Xk, for k ∈ N. We assume that Fi,k(Bk,η), which gives the probability that agent i is within an η-radius
around truth µk, does not depend on topic Xk, that is, Fi,k(Bk,η) = Fi,k′(Bη,k′) for all k, k′, which
means that the probability that agent i is truthful is the same across topics. We then have the following
proposition.

Proposition 2.6.7. Let tolerance η ≥ 0 be fixed. Assume that agents adjust weights based on initial
beliefs, i.e., τ = 0, and assume that T (·) > 0. Then, as k → ∞, agents’ limiting consensus beliefs on
issue Xk are distributed according to

bki (∞) ∼
n∑
j=1

λjZj,k

where

λj ∝ Fj,k(Bk,η)

with
∑n
j=1 λj = 1 (note that λj does not depend upon k by assumption). In particular, we have

E[bki (∞)] =

n∑
j=1

λj E[Zj,k].

Proof. Our proof is not rigorous.
Since agents are homogenous with respect to tolerance η, they will all jointly increase their weight

to a particular agent j (or they will jointly not do so). Therefore, as k increases, rows of W(k) become
more and more similar, independent of the initial conditions W(1) (if weight matrix W(1) is identical
in each row, this will propagate to any W(k) with k > 1, but even if not, rows will become more and
more similar by the homogeneity of agents). The weight mass that any particular agent i assigns to
any particular agent j is clearly proportional to Fj,k(Bk,η) (cf. Figure 2.1) since this value indicates how
frequently agent j is truthful. Hence, since rows of W(k) are (approximately) identical, as k becomes
large, with each entry [W(k)]ij being proportional to Fj,k(Bk,η), limiting beliefs of agents are given by,

bki (∞) u bki (1) =

n∑
j=1

λjb
k
j (0),

where λj ∝ Fj,k(Bk,η). This completes the proof.

Remark 2.6.8. The coefficients λj have a very intuitive interpretation. Since they indicate how limiting
consensus beliefs are formed in terms of initial beliefs, their standard interpretation is that of social
influence weights (cf., e.g., Golub and Jackson, 2010). Clearly, in our endogenous weight formation
model, with weight sizes dependent upon ‘past performance’, an agent’s social influence is intuitively
given by his likelihood of being close to truth.

Example 2.6.3. Considering the distribution of limiting consensus beliefs, we note that if two Zj,k,
for j = x, y, are normally distributed with parameters (µkx, σ

2
x,k) and (µky , σ

2
y,k), then both λjZj,k as

well as
∑
j λjZj,k are normally distributed; the latter sum has normal distribution with parameters

(λxµ
k
x + λyµ

k
y , σ

2
x,k + σ2

y,k). Hence, if all agents’ initial beliefs are normally distributed, their limiting
beliefs are also normally distributed.

Moreover, if there are several ‘types’ or ‘groups’ of agents, N1, . . . ,Nm, of sizes n1, . . . , nm, where each
group has identical and independent initial distribution (within groups), then agents in each group receive
about the same weight mass, which is proportional to (see example below) λNl

1
nl

, for l ∈ {1, . . . ,m}, so

that if sizes n1, . . . , nm of groups become large, then, by the central limit theorem,
∑
j∈Nl λNl

1
nl
Zj,k =

is approximately normally distributed. Thus, by our above remark,
∑
j∈[n] λjZj,k is also approximately

normally distributed. In other words, we would generally expect agents’ limiting beliefs to be normally
distributed, in this setup.
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Example 2.6.4. Consider three groups of agents, N1,N2,N3 ⊆ [n] with N1 ∪ N2 ∪ N3 = [n] and
where the Nl’s are pairwise mutually disjoint. The first group, which we call experts, has initial beliefs
distributed according to N(µk, σ

2
1), where σ2

1 > 0 is fixed (that is, each member in N1 has the given
distribution function, and we assume members’ initial beliefs to be independent). The second and third
groups are biased. Assume, for illustration, that group two has distribution N(µk − a, σ2

2) and group
three has N(µk + b, σ2

3). Assume the groups have sizes n1 = 1
5n, and n2 = n3 = 2

5n, that is, the group
of experts is smallest in size (but still growing in n). Moreover, let, for instance, a = 3, b = 1 and
σ2

1 = σ2
2 = σ2

3 = 1, and let η = 0.25. Then, each expert has λj of about λj ∝ 0.19741, members of
group two have λj ∝ 0.0024 and members of group three have λj ∝ 0.0278. Since the λ’s must sum
to one, we have about λN1

u 0.19751n1

C0
for experts, and λN2

u 0.0024n2

C0
and λN3

u 0.0278n3

C0
for groups

two and three, respectively, and where C0 = λN1
+ λN2

+ λN3
and λNl =

∑
j∈Nl λj for l = 1, 2, 3. For

n = 100, this is about λN1
u 0.44, λN2

u 0.01, and λN3
u 0.55, which is also, approximately, the limiting

structure of the distribution of λ as n→∞. Hence, in the limit, as n→∞, these agents beliefs’ would
converge to a consensus that is off by about λN1 ·0 +λN2 · (−3) +λN3 ·1 = 0.51227 from truths µk. More
precisely, the agents’ limiting consensus values are distributed according to a normal distribution with
mean µk + 0.51227 and variance that converges to zero in n; in particular, variance of limiting consensus

values is given by
σ2

1

n1
+

σ2
2

n2
+

σ2
3

n3
, which is 1

10 for our example. We plot the (predicted and theoretical)

limiting distribution of bki (∞) and a sample histogram from an actual simulation in Figure 2.6.
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Figure 2.6: Left: The distribution functions of beliefs of three groups of agents as discussed in Example
2.6.4; experts’ initial beliefs are always centered around truth, for all topics Xk, while there are two
biased groups, one which underestimates truth and one which overestimates truth. If the relative sizes of
groups are as described in the text, agents distribution of limiting beliefs, as k becomes large, is given by
the high-peak normal distribution indicated, whose mean is off from truth by about 0.5. Right: Sample
distribution from a simulation vs. predicted distribution according to Proposition 2.6.7.

In the next proposition, we discuss weight adjustment based on limiting beliefs. We assume that
Fi,k(A) > 0 for all non-empty intervals A ⊆ S.

Proposition 2.6.8. Let tolerance η ≥ 0 be fixed. Assume that agents adjust weights based on limiting
beliefs, i.e., τ = ∞, and assume that T (·) > 0. Then, as k → ∞, agents’ limiting consensus beliefs on
issue Xk are distributed according to

bki (∞) ∼
n∑
j=1

1

n
Zj,k
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In particular, we have

E[bki (∞)] =

n∑
j=1

1

n
E[Zj,k].

Proof. Since agents reach a consensus for topics Xk, with k > r, and agents adjust weights based on
limiting beliefs, weight matrix entries for all agents converge to 1

n . Convergence to 1
n is assured since

all agents have Fi,k(Bk,η) > 0 by assumption such that the probability that agents’ limiting consensus
is within an η-interval around truth is at least Fi,k(Bk,η)n > 0, from which it follows that agents adjust

weights infinitely often (which each time entails an increment of δ̃ and, thus, implies convergence of
weight matrix entries to 1

n ) with probability 1.

Remark 2.6.9. We see here, again, that adjusting based on limiting beliefs is ‘worse’ than adjusting
based on initial beliefs, since limiting beliefs are formed through social interaction and may thus not
indicate the inherent ‘intelligence’ of an agent.

To quantify the difference by way of illustration, in Example 2.6.4, agents’ beliefs would now converge
to a consensus, as k → ∞, that is off from truths by about n1

n · 0 + n2

n · (−3) + n3

n · 1 = − 4
5 , which is

further away than the value of about 0.51 given in the situation when agents adjust weights based on
initial beliefs. In particular, agents in group N2, who are very poor at estimating truth, now receive
much larger social influence than in the situation where agents adjust based on initial beliefs.

However, qualitatively, the results do not change (by much): in both circumstances, τ = 0 and
τ = ∞, agents’ limiting beliefs, under our endogenous weight adjustment process, are given by convex
combinations of all agents’ initial beliefs, whereby adjusting based on initial beliefs captures, in the social
influence weights λj , the intelligence of agents while adjusting based on limiting beliefs leads agents to
uniform social influence weights λj .

Now, consider, again, the setup where there are two groups of agents, which we denote by N1 and
N2, respectively; the first groups’ initial beliefs are unbiased while the second groups’ initial beliefs are
biased, where we assume that agents within each group have independently and identically distributed
initial beliefs. Assume, furthermore, that Fi,k(Bk,η) > 0 for all agents i = 1, . . . , n.

Corollary 2.6.3. Let τ = 0 or τ = ∞ and let η ≥ 0, the radius within which agents are considered
to be truthful, be fixed. Then, if the group of biased agents N2 is ‘large enough’ (e.g., relative to N1),
agents will not become ε-wise almost surely as n, k →∞, for any ε ∈ (0, ‖µk − E[ZN2,k]‖), whereby ZN2,k

denotes a random variable that represents the distribution of initial beliefs of any agent from group N2.

Proof. By Proposition 2.6.7 and its proof, if τ = 0, λNl =
∑
j∈Nl λj u FNl,k(Bk,η)nl

C0
as k → ∞ (by

FNl,k, we denote the distribution function of an agent from group Nl; also note that FNl,k(Bk,η) does
not depend on k by assumption), where l = 1, 2 and C0 = λN1 +λN2 . Thus, if n2 is large enough (relative
to n1), λN2 be may arbitrarily close to 1 such that, in expectation, agents’ limiting consensus belief will
be arbitrarily close to E[ZN2,k], whereby, by assumption, ZN2,k is a biased variable. As n→∞, limiting
beliefs will converge to E[ZN2,k] almost surely, in this case, by the law of large numbers.

If τ =∞, Proposition 2.6.8 leads to the same conclusion.

Remark 2.6.10. What Corollary 2.6.3 shows is that agents may not become infinitely wise under our
endogenous weight adjustment process if the group of agents with biased initial beliefs becomes large,
as, in this case, this group’s social influence will become arbitrarily large. But the corollary shows
more: agents may not become ε-wise for any ε ∈ (0, ‖µk − E[ZN2,k]‖), which may be an arbitrarily large
interval, depending on the bias of the agents in N2. In other words, if the number of biased agents is
large (relative to the number of intelligent agents), the wisdom that society as a whole can attain is
limited by the latter agents’ bias.
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2.6.3 Varying weights on own beliefs

DeMarzo, Vayanos, and Zwiebel (2003) consider a slight generalization of belief updating process (2.3.1)
where agents may place varying weights on their own beliefs such that (2.3.1) reads as

bk(t+ 1) =
(

(1− λt)In + λtW
(k)
)
bk(t) (2.6.4)

whereby 0 < λt ≤ 1 (note that we treat λt as an exogenous variable). Such a weighting scheme may be
empirically plausible, as it has been found (cf., e.g., Mannes, 2009) that people often tend to overweight
their own beliefs relative to that of outsiders, probably because individuals have access to their own
motivations for beliefs while they do not have such justification for others’ beliefs. This reasoning would
imply that λt is ‘relatively small’. However, as long as weights on others’ beliefs do not drop to zero too
quickly, belief updating rule (2.6.4) leads to the same limiting beliefs as the original DeGroot updating
rule (2.3.1) where λt = 1, for all t, provided that the latter converges; convergence may take sufficiently
longer, however. Hence, under these circumstances, all our previous results remain valid. The following
proposition is a straightforward generalization of the corresponding theorem, Theorem 1, in DeMarzo,
Vayanos, and Zwiebel (2003), which restates the lessons we have just mentioned.

Proposition 2.6.9. Assume that W(k) converges (for all initial belief vectors b(0)), then if,
∑∞
t=1 λt =

∞, updating process (2.6.4) also converges (for all initial belief vectors b(0)) and leads to the same
limiting beliefs as (2.3.1) where λt = 1 for all t.

We list the proof in the appendix.

In all subsequent sections, we only discuss the situations when τ = 0 and T (·) > 0, as the other cases
may be derived in a manner similar to what we have sketched in this section.

2.7 Opposition

In this section, we consider the situation when two subsets of agents ‘oppose’ each other. Such opposition
may derive, for example, from in-group vs. out-group antagonisms, as is an important concept in psy-
chology and sociology (cf. Brewer, 1979; Castano et al., 2002; Kitts, 2006) and as has also more recently
been taken into account in economics models (cf., in an experimental context, e.g., Charness, Rigotti,
and Rustichini, 2007; Fehrler and Kosfeld, 2013) and in social network theory (cf. Beasley and Kleinberg,
2010). Prime exemplars of opposition forces can be found in politics (e.g., democrats vs. republicans;
opposition parties vs. governing party in charge), for example, or also on a more global societal level
(e.g., punks or hippies/counterculture vs. mainstream culture). In the context of (DeGroot-like) opinion
dynamics models, opposition has, prominently, been discussed in Eger (2013) (but see also our discussion
in Section 2.2), whose modeling we relate to.

In the model of Eger (2013), there are two types of links between agents. One link type refers to
whether agents follow or oppose each other and the other link type denotes the intensity of relationship
and is given by a non-negative real number Wij ∈ R. Belief updating is then performed via the operation

bk(t+ 1) = (W(k) ◦ F(k))bk(t), (2.7.1)

whereby the operator W(k) ◦ F(k) is defined via

(
(W(k) ◦ F(k))(b)

)
i

=

n∑
j=1

W
(k)
ij F

(k)
ij (bj),

whereby F
(k)
ij ∈ {F,D}, where F : S → S is the identity function (‘agent i follows agent j’) andD : S → S

is an opposition function (‘agent i opposes/deviates from agent j’). In other words, in this model, agents
form their current beliefs by inverting (via D) or not (‘via F ’) the past belief signals of others and then
taking a weighted arithmetic average, as in standard DeGroot learning, of the so modified (or not) belief
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Figure 2.7: Illustration of an opposition bipartite operator F (agent nodes as blue circles). For conve-
nience, D relationships are indicated in red, and F relationships in green. Here, we draw the network of
agents as undirected, although we generally allow directed links between agents.

signals of their neighbors. As becomes evident, endogenizing this model would require endogenizing two

variables, namely, F
(k)
ij and W

(k)
ij , a task that is beyond the scope of this section. Therefore, we take F

(k)
ij

as exogenous and keep, as before, W
(k)
ij as an endogenous variable, formed, in the case that Fij = F , by

reference to an agent’s past performance.14

Hence, we consider the following situation. Denote by A ⊆ [n] and B ⊆ [n] the two groups of agents
that oppose each other. We posit that F is opposition bipartite (cf. Figure 2.7): for all agents i, i′ ∈ A
it holds that Fii′ = Fi′i = F (analogously for B) and for all agents i ∈ A and i′ ∈ B it holds that
Fii′ = Fi′i = D, which simply means that agents within the two groups follow each other whereas
agents across the two groups oppose each other.15 Next, we assume that, regarding weight adjustments,
members of both groups ignore members of the other group (a sin or bias of omission), taking into
account only members of their own group, that is,

W
(k+1)
ij =

{
W

(k)
ij + δ · T (

∣∣N(bk(τ), µk)
∣∣) if

∥∥bkj (τ)− µk
∥∥ < η and G(i) = G(j),

W
(k)
ij otherwise,

(2.7.2)

where G(i) denotes the group of agent i, which is either A or B; for simplicity, assume T (·) = 1, here
and in the remainder of this section. Finally, we assume that agents i of group A initially assign uniform

intensity of relationship W
(1)
ij = b to each member j of group B and members of group B do analogously,

assigning W
(1)
ij = c, where b and c are positive constants. We also assume that these levels stay fixed

over topics, that is, W
(k)
ij = W

(1)
ij whenever G(i) 6= G(j). When G(i) = G(j), as said, we let weights be

formed according to (2.7.2). Finally, we always assume that weight matrices W(k) are row-stochastic.
We now discuss the so specified model, with endogenous weight (or intensity) formation for at least a
subset of agents, in the following example. For opposition function D, we let D be soft opposition on
S = R (see Eger, 2013, for details) with the functional form D(x) = −x. We first outline the following
proposition from Eger (2013), which gives conditions for convergence of W ◦F, where we omit, here and
in the following, reference to topics Xk for notational convenience.

Proposition 2.7.1. Let D be soft opposition on S = R. Then, W◦F is affine-linear with representation
(A,0). Then, if F is opposition bipartite, λ = 1 is an eigenvalue of A. If λ = 1 is the only eigenvalue of
A on the unit circle and if λ = 1 has algebraic multiplicity of 1, then limt→∞(W ◦F)tb(0) = p for some
polarization opinion vector p (that depends on b(0)) and all initial opinion vectors b(0) ∈ Sn.

In the proposition, a polarization opinion (or belief) vector is any vector p consisting of two beliefs
a, b ∈ S such that D(a) = b and D(b) = a. For our specification of D, this would mean that a = −b.

14If Fij = D, it would make no sense, or be at least problematic, to posit that an agent would increase his intensity of
relationship, relating to opposition behavior, in proportion to another agent’s accuracy of predicting truth.

15This specificiation is not self-evident; intra-group antagonisms, based, e.g., on personalized differences between members
of the same group, might plausibly be allowable.
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Hence, the proposition says that if D is soft opposition, then W ◦ F is representable by a matrix A,
and if in addition F is opposition bipartite (as we assume), then convergence of W ◦ F depends on the
eigenvalues of A. In the following example, we will make reference to the proposition.

Example 2.7.1. Let n1 =
∣∣A∣∣ and n2 =

∣∣B∣∣ with n1 +n2 = n. Before (partly) endogenizing W, assume
first that W and F have the following form,

W =

(
WA,A WA,B
WB,A WB,B

)
F =

(
FA,A FA,B
FB,A FB,B

)
(2.7.3)

where [WA,A]ij = a, [WA,B]ij = b, [WB,A]ij = c, [WB,B]ij = d, and [FA,A]ij = [FB,B]ij = F ,
[FA,B]ij = [FB,A]ij = D; matrices WA,A and FA,A are of size n1 × n1, WA,B and FA,B of size n1 × n2,
etc. Hence, agents in A follow each other, assigning weight a to each other, and agents in B assign
weight d to each other; across the two sets, agents oppose each other, with weights b and c, respectively,
as already indicated above. Moreover, for simplicity, as the given specification posits, we assume that
weights are uniform within groups and opposition weights are also uniformly distributed. Since, as
Proposition 2.7.1 tells, the so defined W ◦ F allows an (affine-)linear representation, this is given by, in
this setup,

A =

(
WA,A −WA,B
−WB,A WB,B

)
, (2.7.4)

as one can verify (cf. Eger, 2013). Furthermore, if (W ◦ F)tb(0) = Atb(0) converges to a polariza-
tion vector (e.g., under the conditions of Proposition 2.7.1), then the one limiting belief is given by∑n
j=1 sjbj(0) and the other is given by −

∑n
j=1 sjbj(0), where s = (s1, . . . , sn)ᵀ is the unique eigen-

vector of Aᵀ satisfying
∑n
j=1 |sj | = 1 and corresponding to eigenvalue λ = 1 of Aᵀ (cf. Eger, 2013,

Remark 6.4). The vector s is then a (generalized) social influence vector (cf. the concept of eigenvector
centrality, e.g., Bonacich, 1972), with |si| denoting the social influence (proper) of agent i and sgn(si)
his group membership. Since, by our specification of W ◦ F, agents in group A must have the same
social influence (by homogeneity of these agents due to the uniform weight structure) as well as agents
in group B, we must accordingly have that s = (x, . . . , x︸ ︷︷ ︸

n1

, y, . . . , y︸ ︷︷ ︸
n2

)ᵀ for some x, y ∈ R. Then, y (or |y|)

measures social influence of members of group B and accordingly for A. Hence, from Aᵀs = s, we find
(1) n1ax−n2cy = x, (2) −n1bx+n2dy = y, and (3) n1x−n2y = 1 (from the unit condition on s). From
this, it follows that

y =
b

n2(d− b)− 1
, and x = (1 + n2y)a− n2cy. (2.7.5)

The case of y may serve as an illustration. Computing the comparative statics of |y| with respect to b
and d, we first find that since n2(d− b) ≤ n2d ≤ 1, it holds that y ≤ 0. Hence, |y| = b

1−n2(d−b) and then,

∂ |y|
∂b

=
1− n2d(

1− n2(d− b)
)2 ≥ 0,

∂ |y|
∂d

=
n2b(

1− n2(d− b)
)2 > 0

such that an increase in d leads to an increase in the absolute value of y, as we would expect — if the
weight that members of group B place upon each other increases, their social influence, measured in
absolute value, increases. Moreover, |y| also increases in b — the more members of group A want to
disassociate from members of group B, the more does group B’s social influence increase, in absolute
value. We exemplify in Figure 2.8 (left).

Hence, under our current assumptions, limiting polarization beliefs of agents are given by
∑
j∈[n] sjbj(0) =∑

j∈A xbj(0) +
∑
j∈B ybj(0) and −

∑
j∈[n] sjbj(0) = −

∑
j∈A xbj(0)−

∑
j∈B ybj(0), respectively. Let us,

for the moment, assume that all agents are ε-intelligent with ε = 0, that is, all agents precisely receive
truths for topics, as initial beliefs. Then, limiting beliefs are, thus,

bkA(∞) =
∑
j∈[n]

sjbj(0) = µk

(
n1x+ n2y

)
︸ ︷︷ ︸

=c

, and bkB(∞) = −
∑
j∈[n]

sjbj(0) = µk

(
−
(
n1x+ n2y

)︸ ︷︷ ︸
=−c

)
,
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respectively, where closed-form solutions of x and y are given in Equation (2.7.5). In Figure 2.8 (right),
we plot, for c = 1

2n and d = 1−n1c
n2

fixed, the coefficient c = n1x+n2y of limiting beliefs (and its negative,

as coefficient of the other limiting belief), as a function of b (and, hence, also of a since a = 1−n2b
n1

);
note that this coefficient denotes the ‘scaling’ of truth in the limiting beliefs, whence, if it is equal to 1,
(some) agents exactly reach truth. We observe the following: if b is very low (compared with c), i.e.,
agents in group A care little about agents in group B (at least relatively) — that is, opposition from A
to B is (relatively) low — then c is very close to 1, which means that agents in group A have limiting
beliefs very close to truth, while agents in group B hold limiting beliefs that are very close to −µk, the
‘opposite’ of truth. As b increases, c becomes smaller, approaching zero as b = c. In other words, if
opposition ‘force’ is equal between groups A and B — in the sense that b = c — then both groups reach
limiting beliefs of zero, no matter what truth is. As group A begins to oppose group B more heavily
than B opposes A, that is, b > c, group A goes further away from truth, toward opposite levels of truth
in that c becomes negative, while group B begins to approach truth.
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Figure 2.8: Both graphs: n = n1 + n2 = 10 + 10 = 20 agents. Left: Social influence, |y|, of agent i of
group B increases both as a function of d (b fixed), ‘within-group trust’ of members of group B, and b
(d fixed), the importance assigned to members of group B via agents of group A. Note that n2b ≤ 1
and n2d ≤ 1 (by row-stochasticity of weight matrices W), which implies, in our case, b, d ≤ 1

10 . Right:
c = 1

2n = 0.025, d = 3
2n fixed. Coefficient c = (n1x+ n2y) of µk (red) and −c (green) as a function of b.

Description in text.

Now, concerning the question whether the conditions on the eigenvalues of matrix A, stated in
Proposition 2.7.1, are satisfied — that is, do agents in fact converge to a polarization? — we mention
that exactly determining the spectrum of A is difficult in the current situation, for general n1 and n2,
and a, b, c, d. For n1 = 1 and n2 arbitrary (and, by symmetry hence also for n2 = 1 and n1 arbitrary),
we find, in the appendix, that A has exactly one eigenvalue, namely λ = 1, on the unit circle and whose
algebraic multiplicity is 1. Thus, in this case, by Proposition 2.7.1, beliefs under W ◦F indeed converge
to a polarization, as we have sketched it, and limiting beliefs have the indicated form. We strongly
suspect that this is true for arbitrary n1 and n2, but leave the derivation open.

Finally, when would we expect W ◦ F to have the form (2.7.3), taking the form of F as exogenous?
The structure of W holds, for instance, when W(1) has the form indicated in (2.7.3), agents adjust
weights (to members of their own group) based on initial beliefs, τ = 0, and, e.g., ε = 0 (agents’ initial
beliefs are exactly µk); then all W(k) have the form as given in (2.7.3). Form (2.7.3) also arises, in the
limit, as k becomes large, when τ = 0 and initial beliefs are stochastically centered around truth and
each agent has the same variance (namely, agents then tend to assign uniform weights to those they
take into consideration in adjusting weights; uniform weights for outgroup members have been assumed
exogenous by us, anyways). In fact, the simulations shown in Figure 2.9, for the latter case, show good
agreement with the analytical predictions for the situation when all agents are ε-intelligent, for ε = 0,
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even for small k, indicating that W(k) has a form close to (2.7.3) quickly, when agents are stochastically
intelligent with identical variances.
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Figure 2.9: Throughout: n = n1 +n2 = 10 + 10 = 20 agents, c = 1
2n = 0.025, d = 3

2n fixed. Discussion of
10 topics; t = 0, 1, 2, . . . , 20 discussion periods shown, for each topic. Truth µk = k+ 5, for k = 1, . . . , 10
(blue lines). In red and green: members of groups A and B, respectively. Top left: All agents receive
initial beliefs bki (0) = µk, b = 0.09 (cf. Figure 2.8 (right)). Top right: bki (0) = µk, b = 0.0245. Bottom
left: bki (0) = µk, b = 0.0009. Bottom right: bki (0) = N(µk, 4), b = 0.0009.

Remark 2.7.1. In Example 2.7.1, we have outlined conditions under which we expect, due to polariza-
tion, at most one group of agents to become wise for topics. The conditions that we have highlighted
— e.g., ε-intelligence, for ε = 0, or initial beliefs stochastically centered around truth whereby all agents
have identical variances — might appear quite special. We believe that similar polarization results hold
for much more general conditions, but those outlined have the benefit of being analytically tractable
more easily while still indicating results, as we think, of a general nature.

Remark 2.7.2. To summarize the importance of results indicated in Example 2.7.1, note that in this
section, agents have been influenced by two ‘polar’ forces. On the one hand, they were attracted by truth
by their adherence to principles that potentially lead them closer to truth — e.g., weight adjustment to
those agents in their in-group that have been truthful in the past. On the other hand, agents had —
exogenously — specified antagonisms to members of another group (a sin or bias of commission), their
outgroup, which drew them toward beliefs that are different from those held by their adversaries. The
message from Example 2.7.1 is clear in this context: the group that has (relatively) stronger incentives to
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disassociate from negative referents tendentially will drift away from truth considerably, while the group
with (relatively) weaker such incentives may still become wise (under appropriate initial conditions on
beliefs), which is an intuitive result since, for the former group, disassociation seems to be (relatively)
more critical than truth.

2.8 Conformity

Buechel, Hellmann, and Klößner (2013) and Buechel, Hellmann, and Klößner (2012)16 study a DeGroot-
like opinion dynamics model under conformity, that is, where individuals are not only informationally
socially influenced by others but also normatively in that they are motivated to state opinions that
tend to fit the group norm, possibly, in order to get “utility gain[s] by simply making the same choice
as one’s reference group” (cf. Zafar, 2011, p. 774). A classical example of such conforming behavior is
documented in the famous study of Asch (1955) where subjects wrongly judged the length of a stick
after some other, supposedly neutral, participants had given the same wrong judgment. More examples
and relevant theoretical and empirical literature, e.g., Deutsch and Gerard (1955), Jones (1984), etc., on
conforming behavior among human subjects are directly provided in Buechel, Hellmann, and Klößner
(2013). As we have indicated in the introduction, we may perceive of conformity to a reference opinion,
in our context, as a bias toward the beliefs of one’s reference group.

Mathematically, agents in the named model update their beliefs informationally according to the
following rule,

b(t+ 1) = Db(t) + (W −D)s(t), (2.8.1)

where s(t) ∈ Sn denotes the vector of stated opinions or beliefs (whose formation, as assumed, underlies
normative social pressure, as we indicate below), b(t) ∈ Sn denotes the vector of true beliefs, W is the
social network (or, ‘learning matrix’) as in the standard DeGroot model, and D denotes its diagonal.
Updating rule (2.8.1) says that agents form their current beliefs by taking a weighted arithmetic average
of their past true beliefs and others’ stated beliefs. Then, as concerns normative social influence, agents
are assumed to choose stated beliefs si(t) by reference to the utility maximization problem

ui(s; b) = −(1− δi)(si − bi)2 − δi(si − qi)2, (2.8.2)

whereby the term (si − bi)2 represents an agent’s preference for honesty (misrepresenting true opinions
may cause cognitive discomfort, cf. Festinger, 1957) and the term (si − qi)2 represents preference for
conforming to a reference opinion qi. The parameter δi ∈ (−1,+1) displays the relative importance
of the preference for conformity in relation to the preference for honesty. If δi < 0, then agents have
preference for counter-conformity in that their reference group serves as a negative referent. Now,
consider that at the end of each (opinion updating) round t = 0, 1, 2, . . ., agents play a normal form
game ([n], Sn, ui(·; bi(t))). Let q = (q1, . . . , qn)ᵀ and let q(t) = Qs(t) where Q is an n × n matrix that
indicates how reference opinions are formed from stated opinions; we assume that Qii = 0 for all i ∈ [n]
such that agents do not take into account their own stated opinion in reference opinion formation17 and
we also assume that Q is row-stochastic. The next proposition says that the normal form game has a
unique Nash equilibrium.

Proposition 2.8.1. Denote by ∆ the diagonal matrix with ∆ii = δi. Then the normal form game
([n], Sn, u(·; b(t))), for u(·; b(t)) =

(
u1(·; b(t)), . . . , un(·; b(t))

)
, has a unique Nash equilibrium, which is

given by

s∗(t) = (In −∆Q)−1(In −∆)b(t) = Q̃b(t).

We prove Proposition 2.8.1 in the appendix. The proposition is a (straightforward) extension of the
corresponding proposition, Proposition 1, in Buechel, Hellmann, and Klößner (2012) in that they choose

the particular Q with Qij =
Wij

1−Wii
(Qii = 0). In the revised version of their paper, the named authors

16Henceforth, we only relate to the more recent version of their paper, unless the difference becomes important.
17They know better anyway, by knowledge of their true opinions.
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also specify an iterative process that explains how agents reach the Nash equilibrium s∗(t) but we omit
the recapitulation of this idea, because it is rather technical and does not provide further insight at this
point.

Hence, simply assuming that agents play the Nash equilibrium s∗(t) at the end of each period t (such
that, for t+ 1, b(t) and s(t) are available), beliefs evolve according to, combining (2.8.1) with s∗(t),

bk(t+ 1) = M(k)bk(t),

where

M(k) = D(k) + (W(k) −D(k))Q̃(k) = D(k) + (W(k) −D(k))(I−∆(k)Q(k))−1(I−∆(k)), (2.8.3)

and where we also index matrices by topic indices. As becomes obvious, this model has now many
variables that can potentially be endogenized, namely, W(k), ∆(k), which summarizes the conformity
parameters, and Q(k), which summarizes how agents form reference opinions. In the following, we take
∆(k) as exogenously given and constant across topics; the elements [∆(k)]ii = δi may then be perceived
as ‘personality traits’ of individuals. For W(k), we assume the same endogenous weight formation as
before, where weight increments depend upon past performance. The matrix Q(k), we take as arbitrary
exogenous variable first, satisfying row-stochasticity and Qii = 0 as above, and specialize then in the
examples.

Our first proposition paths the way for a convergence result in our situation. It says that the property
of having a positive column propagates from W(k) to M(k) if no agent is counter-conforming.

Proposition 2.8.2. Let k ≥ 1 be arbitrary. Let δi ≥ 0 for all i ∈ [n] such that agents never counter-
conform. Then, if W(k) has a positive column, then so does M(k).

Proof. By the proof of Proposition 2.8.1, given in the appendix, the inverse of In −∆(k)Q(k) always
exists (as long as |δi| < 1, which we assume throughout) and is given by

∑∞
r=0

(
∆(k)Q(k)

)r
. Since δi ≥ 0

and since Q(k) is assumed to be row-stochastic, the latter sum is a sum of non-negative matrices and
therefore, the infinite sum yields a matrix with non-negative entries. Moreover, since A0 = In for any
arbitrary matrix A, all diagonals of

∑∞
r=0

(
∆(k)Q(k)

)r
are hence strictly positive (In has strictly positive

diagonals and the remaining summands are all non-negative). Moreover, since P := In − ∆(k) is a
diagonal matrix with each entry Pii ∈ (0, 1],

P̃ =
(
In −∆(k)Q(k)

)−1(
In −∆(k)

)
accordingly also has diagonal entries that are all strictly positive. Next, since W(k) has a strictly positive
column j by assumption, W(k)−D(k) has a strictly positive column j, except for element j of that column,
which is zero. Hence, multiplying, W(k)−D(k), a non-negative matrix by assumption, with P̃ results in
a matrix that also has a strictly positive column j, except possibly for its diagonal. But since D(k) has
a positive entry [D(k)]jj (since column j of W(k) is positive by assumption),

D(k) + (W(k) −D(k))(I−∆(k)Q(k))−1(I−∆(k))

has a positive column j. The latter matrix is, by definition, Eq. (2.8.3), precisely the matrix M(k).

As a corollary, we have our first convergence (to consensus) result, which provides both an alternative
to the convergence result provided in Buechel, Hellmann, and Klößner (2013), and a generalization as
well as a strengthening. It is more general since it considers arbitrary Q rather than the peculiar choice
that the named authors consider. It provides an alternative since it says that conformity and a positive
column of W(k) are sufficient conditions for convergence, while the proposition in Buechel, Hellmann,
and Klößner (2013) states that conformity and a positive diagonal of W(k) are sufficient conditions for
convergence. Finally, it is a strengthening because it states convergence to consensus rather than merely
convergence. Before proving the theorem, we need the following lemma which says that the rows of M(k)

sum to 1 and which we prove in the appendix.
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Lemma 2.8.1. The matrix M(k) defined in (2.8.3) satisfies

M(k)
1 = 1

for any row-stochastic Q.

Corollary 2.8.1. Let k ≥ 1 be arbitrary. Assume that δi ≥ 0 for all i ∈ [n]. Then, if W(k) has a
positive column, then M(k) induces a consensus.

Proof. First, if δi ≥ 0, then M(k) is a non-negative matrix by the proof of Proposition 2.8.2. Moreover,
by Lemma 2.8.1, M(k) is then also row-stochastic. Finally, by Proposition 2.8.2, if W(k) has a positive
column, then so does M(k). A row-stochastic matrix with positive column induces a consensus by
Theorem 2.6.1.

It might be worthwhile, in future considerations, to study in more depth which properties M(k)

inherits from W(k), and under which conditions. As mentioned, Buechel, Hellmann, and Klößner (2013)
demonstrate that M(k) inherits a positive diagonal from W(k) (under their particular choice of Q and
under conformity) as well as the general social network structure (see their discussion in their Section
4), while we show that the property of positive columns also propagates, for arbitrary Q.

For now, we contend ourselves with the fact that Corollary 2.8.1 implies that, as in the standard
DeGroot model, agents almost always reach a consensus — that is, for almost all topics — even under
conformity (δi ≥ 0), under very mild conditions.

Proposition 2.8.3. Let η ≥ 0, agents’ tolerance, be fixed. Let τ = 0 (resp. τ = ∞). Let T (·) > 0.
As in Proposition 2.6.1, let r be the earliest time point that some agent is η-intelligent (resp. η-wise)
for topic Xr. Then, under the conformity model presented above, with δi ≥ 0 for all i ∈ [n], (a) agents
reach a consensus for all topics Xk with k > r, independent of their initial beliefs. (b) For topics 1, . . . , r,
agents’ reaching a consensus depends on W(1) and on Q(1) to Q(r) as well as on ∆(1) to ∆(r).

Proof. (a) As in the corresponding proof of Proposition 2.6.1, W(r+1) has a positive column and so do,
in general, have all matrices W(k), for k > r. Hence, by Corollary 2.8.1, agents reach a consensus for
topics Xk, for k > r, under the conformity model, as long as δi ≥ 0 for all i ∈ [n]. (b) Of course, whether
or not agents reach a consensus for X1 to Xr depends on the parameters of the model.

As mentioned before, if there exist agents whose initial beliefs have positive probability of lying within
an η-interval around truths, then r, as defined in Proposition 2.8.3, is a finite number almost surely. For
standard parametrizations (e.g., all agents have positive probability of being truthful, for all topics), r
is very low — typically r = 1 — with probability that goes to 1 in n, population size (cf. Remark 2.6.2).

Example 2.8.1. If agents are counter-conforming, Proposition 2.8.3 may be false in that beliefs may
even diverge, rather than lead to a consensus. Consider, for instance,

W(r+1) =
1

1 + 2δ

1 + δ δ 0
δ 1 + δ 0
δ δ 1

 ,

which would be the resulting weight matrix if τ = 0 and agent 1’s and 2’s initial beliefs were in an
η-radius around truth, for the first time, for topic Xr. For convenience, assume that

Q(r+1) =

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

 , ∆ =

a 0 0
0 b 0
0 0 c

 ,

where −1 < a, b, c < 1. Then, sample belief dynamics for this setting are sketched in Figure 2.10. As
the graphs illustrate, under counter-conformity, agents may want to diassociate from others in a manner
strong enough to induce divergence.



CHAPTER 2. ENDOGENOUS OPINION DYNAMICS MODEL WITH BIASED AGENTS 92

-10

-5

0

5

10

0 5 10 15 20

a = 0.10
b = 0.10
c = 0.10

-10

-5

0

5

10

0 5 10 15 20

a = −0.60
b = −0.60
c = 0.10

-150

-100

-50

0

50

100

150

0 5 10 15 20

a = −0.95
b = −0.95
c = 0.10

Figure 2.10: Belief dynamics for topic Xr+1 as sketched in Example 2.8.1. We use δ = 5 for the weight
adjustment increment.

Next, we discuss social influence of agents as a function of conformity parameters and the structure of
W(k). In particular, we show that even agents with an ‘empty record of past successes’ can be influential
in the endogenous conformity model if conformity parameters δi and matrix Q are appropriately specified.

Proposition 2.8.4. Let δi > 0 for all i ∈ [n]. Assume that Q is strictly positive on all off-diagonal
entries. Then, if W has at least two positive columns, M is strictly positive everywhere.

Proof. Again, M is

M = D + (W −D)(In −∆Q)−1(In −∆).

We have R := (In −∆Q)−1 =
∑∞
r=0(∆Q)r is strictly positive in each entry since Q is positive on all

off-diagonals and since δi > 0, whence (∆Q)1 is positive on all off-diagonals and note that (∆Q)0 = In
has positive diagonals; the remaining terms (∆Q)r, for r ≥ 2, are non-negative. Hence, also R̃ :=
R(In −∆) > 0 entrywise, since the diagonals of (In −∆) are positive. Hence, since W has at least two
positive columns, (W −D)R̃ is also positive and then also M = D + (W −D)R̃.

Remark 2.8.1. Thus, if Q is strictly positive in each entry (other than the diagonals) and all agents
are (strictly) conforming and W has at least two positive columns, then M is strictly positive in each
entry. This means that Mt is strictly positive in each entry, for all powers t ≥ 1. This also means
that limt→∞Mt, which exists for a row-stochastic M that is strongly connected and aperiodic (as an
M with strictly positive entries is), is positive in each entry. But this means that, under conformity, if
agents form their reference opinions q, to which they strive to conform, with respect to all other agents
(that is, Q is strictly positive, except for the diagonals), then each agent i has strictly positive social
influence on the limiting beliefs, even if i has never been truthful in the past. The amount of influence
(even non-truthful) agents have on limiting beliefs depends then both on past performance and on the
conformity parameters δi. We illustrate in the next example.

Example 2.8.2. Assume the following situation. There are n = 3 agents and W(k) has the form

W(k) =

 1
2

1
2 0

1
2

1
2 0

1
2

1
2 0

 .

Such a W(k) may arise, for instance, for large k, when τ = 0 and when agents 1 and 2 have initial
beliefs centered around truth, with identical variances, and agent 3 has never been truthful, for instance,
because Pr[bk3(0) ∈ Bk,η] = 0, for all k ≥ 1. Assume that

Q(k) =

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

 ,

which means that everyone weighs everyone else uniformly in forming reference opinions, and assume
that Q(k) is constant across topics. Finally, let δ1 = δ2 = a and δ3 = b, where 0 < a, b < 1. Consider
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the social influence of agents — that is, their influence on limiting beliefs as a function of initial beliefs.
Since agents 1 and 2 are identical, they must have the same social influence, which we denote by x ≥ 0,
and let agent 3 have influence y ≥ 0, such that 2x+y = 1. In the appendix, we show that y has the form

y =
a(1− b)

4− ab− 3a
.

Computing the comparative statics with respect to a and b, we find

∂y

∂a
=

(1− b)
(

4− ab+ 3b
)

(
4− ab− 3a

)2 > 0,
∂y

∂b
=

a(a− 7)(
4− ab− 3a

)2 < 0.

Thus, influence of agent 3 decreases in own conformity, b, and increases in conformity of the stochastically
intelligent agents, a. Moreover, we find

lim
a→1

y = 1, lim
b→1

y = 0,

such that agent 3, who has zero probability of knowing truth, may have arbitrarily large social influence
on limiting beliefs, as long as agents 1 and 2 exhibit arbitrarily large conformity, and agent 3’s social
influence may also vanish, as his own conformity becomes arbitrarily large. In Figure 2.11, we plot y
as a function of a (for fixed levels of b) and b (for fixed levels of a). Note that this result, namely, that
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Figure 2.11: Social influence y of agent 3 as a function of a, conformity of agents 1 and 2, and b, own
conformity.

an agent with zero probability of being truthful may become arbitrarily influential, could not have been
possible in the standard model with endogenous weight formation as we have sketched, since such an
agent’s social influence would always be zero (or converge to zero) by the results developed in Section
2.6, as k becomes large. This result would also not have been possible had there been only one positive
column of matrix W(k) (and the others all zero) since in this case the corresponding agent, even if he
were excessively conforming and would thus state an opinion arbitrarily close to that of his reference
group, would both ignore his own stated opinion (because he knows his true opinion) and that of others
(because all other columns are zero, by assumption) such that the agent corresponding to the positive
column would always have social influence of 1. In other words, we require at least two conforming
intelligent agents in order for a non-intelligent to be able to become influential, under our current model
specification.

To summarize, our current example shows that if conformity parameters are ‘adequately’ specified,
an agent with zero probability of being close to truth may become arbitrarily influential, which, again,
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means that society may be arbitrarily far off from truth in our setup. In particular, under conformity,
society may be drawn away from truth by agents without any past successes.18

But, of course, a crucial aspect in the current example has also been matrix Q, which determines
how agents form reference opinions, and which agents a particular agent strives to conform to, and which
we have assumed strictly positive. Of course, it might not be implausible to assume that Q depends, in
particular, on past performance. This is our final example.

Example 2.8.3. Let [Q(k)]ij =
[W(k)]ij

1−[W(k)]ij
for i 6= j and let [Q(k)]ii = 0 such that Q is formed in

an analogous way as W.19 In particular, in this setup, agents want to conform to those who have
performed well in the past. Assume that there are two types of agents, whereby one type has initial
beliefs centered around truth as in (2.6.1) and the other type has zero probability of ever being truthful,
Pr[bki (0) ∈ Bk,η] = 0 for all k and all i ∈ N2 where N2 ⊆ [n] is the set of agents of type two, and by N1

we denote the set of agents of type one. Then, if τ = 0 and as k becomes large, W(k) has the structure

where in each row i, W
(k)
ij ≈ 1

Cσ2
j

for j ∈ N1 (C is a normalization constant) and W
(k)
ij ≈ 0 for j ∈ N2,

by the results developed in Section 2.6, and where σ2
j is the variance of agent j’s initial belief. The

informational social influence of agent i is then also given by, roughly, wi = 1
Cσ2

i
, for i ∈ N1, and wi = 0,

for i ∈ N2, respectively. Moreover, the combined informational as well as normative social influence of
agents is given by

vi =
(1− δi) · wi∑
j∈N1

(1− δj)wj

for agents i ∈ N1 and vi = 0 for agents i ∈ N2. These results follow directly from Theorem 1 and
Corollary 1 given in Buechel, Hellmann, and Klößner (2013), which precisely state that closed and
strongly connected groups (which N1 is, at least for large k) have social influence vi as given and the
‘rest of the world’, which group N2 forms, has vi = 0.

This example shows that if Q follows the structure of W, then, unlike in the previous example where
Q was uniform (or at least strictly positive on the off-diagonals), agents that never know truth cannot
be influential. It moreover shows that social influence decreases in conformity (for the agents in N1), as
we have already observed in the previous example.

Investigating social influence in the general case, for arbitrary Q,W, and ∆, would be highly inter-
esting, as it indicates to which degree agents who are never truthful can still be influential, and scope
for future work.20

2.9 Homophily

In this section, we extend the standard endogenous weight adjustment opinion dynamics model dis-
cussed in Section 2.6 by introduction of the concept of homophily, according to which, as McPherson,
Smith-Lovin, and Cook (2001) phrase it, ‘similarity breeds connection’, and which is a majorly accepted
standard concept in modern socio-economic research. In the opinion dynamics literature, homophily has
been modeled by positing that weights (social ties) between any two agents are functionally dependent
on the agents’ current belief distance (cf. the Hegselmann and Krause models, Deffuant et al., 2000;
Pan, 2010, etc.), that is, agents with more similar current beliefs place greater (current) weight upon
each other. Opinion updating is then performed as in standard DeGroot learning, via weighted averages
of peers’ past beliefs, where the weights are now endogenously formed by the homophily principle. As
indicated in the introduction, we think of homophily, in our context, as arising from biased reasoning,
where individuals overrate beliefs that are similar to their own (cf. Kunda, 1990).

18Which might be an illustration of why even ‘blatantly’ and repetitively false propaganda may work.
19As mentioned, this is the specification discussed in Buechel, Hellmann, and Klößner (2013).
20Proposition 2.8.4 is an important step in this direction already, since it says that if Q(k) is strictly positive on all

off-diagonals, ∆(k) is strictly positive in all diagonals, and W(k) has two positive columns, then all agents are influential.
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In the Hegselmann and Krause models, to which we relate, agents set time-varying weights according
to the following rule,21

Wij(t) =

{
1

|Ii(b(t))| if j ∈ Ii(b(t)),

0 else,

where Ii(b(t)) denotes the set of agents within an ηH -radius, for ηH ≥ 0, around agent i’s belief bi(t) at
time t, that is, Ii(b(t)) = {j ∈ [n] | ‖bj(t)− bi(t)‖ < ηH}, and where ηH is an external parameter. One
plausible integration of this setup in our framework is to let agents increment weights to other agents
whenever distance between their current beliefs is sufficiently small, that is,22,23

W
(k)
ij (t+ 1) =

{
W

(k)
ij (t) + δH if j ∈ Ii(b(t)),

W
(k)
ij (t).

(2.9.1)

Then, after truth is revealed, agents again adjust weights according to the ‘truth related’ principles
outlined in Section 2.3. In particular, we would now have,

W
(k+1)
ij (0) =

{
limt→∞W

(k)
ij (t) + δT · T (

∣∣N(bk(τ), µk)
∣∣) if

∥∥bkj (τ)− µk
∥∥ < ηT ,

limt→∞W
(k)
ij (t) otherwise,

(2.9.2)

for all k ≥ 1, where we need to consider, for next topic’s initial weights, the limit, as time goes to
infinity, of the time-varying weights for the previous topic, since weights are now also adjusted within
topic periods. Note that, here, we also subscript η — the radius within which weights are adjusted
— and δ — the weight increment — by T and H, respectively, depending on whether we relate to
adjusting/incrementing based on truth or based on homophily.

Also observe that (2.9.2) is well-defined only if limt→∞W
(k)
ij (t) exists, which we näıvely assume in

the following but the formal proof of which we leave open. It is worthwhile mentioning that adjusting
weights based on truth may microeconomically be justified precisely as we did in Section 2.4 — namely,
it may follow from the tenet that agents have disutility from not knowing truth, whence, by incrementing
weights to agents who have been truthful in the past, they increase their likelihood of eventually becoming
close to truth, provided that the assumptions they make (bona fides, etc.) are satisfied. In contrast,
we offer no explicit microeconomic foundation — that is, based on utility functions and their explicit
maximization — here of why agents would increment weights to other agents based on the homophily
relation, taking this behavior simply as a form of (exogenous) bias. Moreover, similar as in the opposition
model, it is appropriate, in the current setting, to think of agents as motivated by two contrarian forces
— truth and homophily —24 which may possibly act to the ‘same ends’, but which we generally think
of as of antipodal origin and direction.

Concerning updating of beliefs, beliefs evolve according to

bki (t+ 1) =

n∑
j=1

W
(k)
ij (t)bkj (t), (2.9.3)

as outlined in Section 2.3, with the addition that we now let weights W
(k)
ij vary within discussion periods.

Due to the slightly greater complexity involved in belief dynamics, we summarize the belief evolution
process in the below schematic form.

Providing general results for the belief dynamics process currently under consideration is not so easy
since weights do not only vary by time now, but, in particular, by the current belief state vector b(k)(t).
Lorenz (2005) gives convergence results for this general setup, which we list in Appendix 2.A, whose

21Note that, thus far, we have assumed weights to be only varying across topics and not in addition across discussion
rounds (time) within a given topic.

22Otherwise, if weights were not incremented but rather set in an ‘absolute manner’, the continuity of weight relationships
across topics could not be maintained.

23After each round t, we renormalize weights in order for them to satisfy the row-stochasticity condition.
24Note that in the opposition model, the two forces were an agent’s ingroup and his outgroup.
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1: let W(1)(0) be (exogenously) given
2: for k = 1, 2, 3, . . . do
3: let bki (0) denote initial beliefs for topic Xk for all agents i = 1, . . . , n
4: for t = 0, 1, 2, 3, 4, . . . do
5: adjust weights W(k)(t) based on homophily, Eq. (2.9.1); normalize weights
6: update beliefs bki (t+ 1) for all agents i via Eq. (2.9.3)
7: end for
8: adjust weights W(k+1)(0) based on truth, Eq. (2.9.2); normalize weights
9: end for

assumptions, however, do not apply to our situation. As a first illustration, still, we show that, unlike in
the standard model and under conformity, even after some agent has been truthful for a topic Xr, agents
need not converge to a consensus, but may hold distinct limiting beliefs about Xr+1; whether consensus
obtains or not may depend on the relative sizes of δT , which we may think of as ‘importance of truth’,
versus δH , which we may think of as ‘importance of homophily’.

Example 2.9.1. Let there be n = 4 agents. Assume that W(1)(0) is the n×n identity matrix. Moreover,
let τ = 0 and assume that agent 1 receives initial signal b11(0) = µ1 and that agents 2, 3 and 4 are not
within an ηT -radius around truth, for topic X1. Finally, assume that any two agents’ initial beliefs b1i (0)
and b1j (0) are at least a distance of ηH away from each other for topic X1 so that homophily plays no
role for topic X1. Then, at the beginning of topic X2, agents adjust weights based on truth such that
W(2)(0) looks as follows

W(2)(0) =
1

1 + δT


1 + δT 0 0 0
δT 1 0 0
δT 0 1 0
δT 0 0 1

 .

Assume that initial beliefs of agents for topic X2 are b21(0) = b22(0) and b23(0) = b24(0), whereby initial
beliefs of agents 1 and 2, on the one hand, and 3 and 4, on the other hand, are at a distance of at
least ηH . This specification means that agents 1 and 2, on the one hand, and 3 and 4, on the other,
form distinct ‘homophily clusters’, at least at time t = 0, for topic X2. In Figure 2.12, we sketch belief
dynamics for topic X2 for different values of δH , with δT = 0.1 and ηH = ηT = 0.2 fixed. We see that,
unlike in the standard DeGroot learning case in this setup (and also in the conformity model) and as
already indicated, agents do not necessarily reach a consensus. If homophily is ‘too strong’, that is, δH
is ‘too large’, agents polarize in this setting. As homophily becomes weaker, that is, δH becomes smaller,
the beliefs of agents 3 and 4 move closer to the beliefs of agents 1 and 2, the former of which has been
truthful for topic X1. As δH falls below a certain threshold, the agents reach a consensus.

To sketch one (simple) result of a general nature, here, however, consider, similarly as before, the
situation when there are two groups N1 and N2 of agents, whereby agents in N1 are ε-intelligent, for
a fixed ε ≥ 0, and agents in N2 have initial beliefs bki (0) with Pr[bki (0) ∈ Bk,ηT ] = 0, that is, agents
in N2 have initial beliefs such that the probability that they ‘correspond to’ truth is zero. In the next
proposition, we show that all agents may become ε-wise, even if δH > 0, in this situation provided that
agents value truth ‘sufficiently much’ and value relations based on homophily sufficiently little. This
result is not entirely trivial because, for instance, for our opposition model, arbitrarily small ‘opposition
force’ could induce (at least some) agents to not converge to truth. The result says that homophily does
not always need to interfere with wisdom.

Proposition 2.9.1. Let ηT ≥ 0, ε ∈ [0, ηT ], and topic Xk be fixed, for k ≥ 2.25 Then there exist δT > 0
large enough and δH > 0 small enough such that all agents become ε-wise for Xk.26

25For topic X1, there are no weight adjustments based on truth, so we exclude this situation.
26Of course, if δH were zero, any positive δT would satisfy the conditions of the proposition. In our setup, we assume,

however, that homophily always plays a role, that is, δH > 0 for all ‘homophily increments’ δH .
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Figure 2.12: Belief dynamics for topic X2 with setup as sketched in Example 2.9.1. Initial beliefs are
b21(0) = b22(0) = 1, b23(0) = b24(0) = 0. As long as beliefs of agents 3 and 4 do not come within distance
of ηH = 0.2 to the beliefs of agents 1 and 2, the latters’ beliefs evolve according to b21(t) = b22(t) = 1
since both agents have the same initial beliefs and are not ‘disturbed’ by agents 3 and 4. In contrast,
beliefs of agents 3 and 4 are affected by agent 1’s beliefs since agent 1 has been truthful for topic X1,
but their weight link to this agent vanishes as t becomes large if δH is ‘large enough’. In general, we
have b21(t) = b22(t) and b23(t) = b24(t) for all t ≥ 0 so that it suffices to graph belief dynamics of agents 1,
on the one hand, and 3, on the other.

Proof. Since the agents in N1 are ε-intelligent, with ε ≤ ηT , all agents adjust weights for these agents
based on truth. By choosing δT large enough and δH small enough (but positive), it can be ensured
that beliefs [bk(1)]i, for all i ∈ [n], are in the (open) ε-interval around truth µk (the weights for the
ε-intelligent agents may become arbitrarily close to uniform provided δT is large enough and δH is small
enough and the weights for the agents in N2 may become arbitrarily close to zero). Since W(k)(t) is
row-stochastic, for every t ≥ 0, and since the (open) interval of radius ε around truth is a convex set, all
belief vectors bk(t), for t ≥ 1, lie, component-wise, in Bk,ε.

Remark 2.9.1. In the last proposition, δT = δT (k) and δH = δH(k) may depend upon the topic Xk

(e.g., in particular on the distribution of initial beliefs for this topic). If we let, δT := maxk∈N δT (k) and
δH := mink∈N δH(k),27 then for this choice of δT and δH , all agents will be ε-wise for all topics Xk, for
k ≥ 2.

Example 2.9.2. We illustrate Proposition 2.9.1 in Figure 2.13, where we sketch belief dynamics for a
sequence of topics for fixed parametrizations and various choices of δT and δH . In the figure, we simulate
belief dynamics across topics for n = 50 agents, where n1 = 10 agents are ε-intelligent and n2 = 40
agents have initial distribution of beliefs such that their initial beliefs are never in an ηT interval around
truth; for the sake of concreteness, we let µk = 0, for all k ≥ 1, ε = 0.25, ηT = 0.25, and for the agents
in N2, we let their initial beliefs be distributed according to the random uniform distribution on the
interval [1, 4].

The graphs illustrate, first, that truth attracts all agents since even the beliefs of the agents in N2

move in the direction of truth, as time progresses. However, as long as preference for homophily δH
is not small enough and preference for truth δT is not large enough, the agents in N2 do not become
ε-wise for topics. The graphs also illustrate the clustering of beliefs due to the homophily relationship,
a circumstance well-known from the classical Hegselmann-Krause models.

Remark 2.9.2. The graphs in Figure 2.13 show much analogy with results of the original opinion
dynamics model ‘under homophily’ as developed in the work of Hegselmann and Krause, on which our
current modeling is based (recall that the difference is that we increment weights in case two agents’

27This would require to ensure that the so defined δH is strictly positive (rather than zero) and that δT <∞.
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Figure 2.13: Parametrizations throughout: ε = 0.25, µk = 0 for all k ≥ 1, ηT = ηH = 0.25, n = 50
agents, |N1| = 10, |N2| = 40. From top to bottom and left to right: (δH , δT ) = (0.2, 1.0); (δH , δT ) =
(0.1, 1.0); (δH , δT ) = (0.05, 1.0); (δH , δT ) = (0.02, 1.0); (δH , δT ) = (0.02, 0.1). We show topics Xk, for
k = 1, 2, . . . , 20 and, for each topic, discussion rounds t = 0, 1, . . . , 10.

beliefs are similar, while they set weights uniformly in this case, and that we in addition introduce truth
as an influential factor). In particular, in the graphs, we find that

• the opinion dynamics process always converges, and that

• agents (or, rather, their beliefs) cluster into subgroups in which agents reach a consensus.

Proving these apparently generally true observations is beyond the scope of our investigation here, and
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we leave it for future consideration.28

We close this section by presenting simulations on the role of the truth related radius ηT and the
homophily related radius ηH , respectively. Concerning ηH , we find in Figure 2.14 that a smaller ηH (that
is, based on homophily, agents trust/listen to only those with very similar beliefs) tends to produce a
larger degree of fragmentation of limiting belief spectra while larger ηH (that is, based on homophily,
agents even trust/listen to agents with rather distinct beliefs) tends to promote global agreement among
agents. Interestingly, smaller ηH also leads agents closer to truth (since the homophily relation applies
to fewer agents). Concerning ηT , in Figure 2.15, we find that, overall, an increase in ηT increases the
average distance of limiting beliefs to truth since also beliefs that are remote from truth are taken into
consideration in link weight adjustment.
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Figure 2.14: Parametrizations throughout: ε = 0.25, µk = 0 for all k ≥ 1, ηT = 0.25, δH = 0.2, δT = 1.0,
n = 50 agents, |N1| = 10, |N2| = 40. From top to bottom and left to right: ηH = 0.05, ηH = 0.25,
ηH = 1.10, ηH = 1.50. We show topics Xk, for k = 1, 2, . . . , 20 and, for each topic, discussion rounds
t = 0, 1, . . . , 10.

In sum, in this section, we have shown that, under the ‘homophily bias’ and under the presence
of agents with biased initial beliefs, agents need neither become wise nor reach a consensus. If the
homophily relation is sufficiently ‘weak’, wisdom may obtain (Proposition 2.9.1), but if it is sufficiently
‘strong’, agents’ beliefs will generally cluster into distinct regions of the belief spectrum. As in the
conformity model (and also as under opposition), even agents with zero probability of being close to
truth may influence others.

28See Krause (2000) for a starting point on how to prove the results in question.
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Figure 2.15: Parametrizations throughout: ε = 0.25, µk = 0 for all k ≥ 1, ηH = 0.25, δH = 0.2, δT = 1.0,
n = 50 agents, |N1| = 10, |N2| = 40. Left: ηT = 0.25. Right: ηT = 2.50. We show topics Xk, for
k = 1, 2, . . . , 20 and, for each topic, discussion rounds t = 0, 1, . . . , 10.

2.10 Conclusion

As Acemoglu and Ozdaglar (2011), and many others, point out, the importance of the beliefs we hold
cannot be overstated. For example, the demand for a product depends on consumers’ opinions and
beliefs about the quality of that product and majority opinions determine the political agenda. Thus,
beliefs also shape (our) behavior in that they lead us to buy certain products and reject others or in that
they are causal factors for the implementation of laws and policies. On a more abstract level, the set of
norms and beliefs we hold determine, in the end, who we are and substantiate our cultural foundations.
In modern microeconomic research, beliefs and opinions are thought to originate from social learning
processes whereby individuals are situated in a network of peers and update their opinions, e.g., via
communication with others. Rejecting the hypothesis that individuals are fully rational, much recent
research has assumed that people learn from others via simple ‘rules of thumb’, simply averaging peers’
past beliefs to arrive at new beliefs. Then, given that there exist ‘true states’ for the issues that individuals
hold beliefs about, a natural question to ask is whether such agents, who commit the bias of not properly
accounting for the repetition of information they hear, can, in fact, still learn these true states and, thus,
become collectively ‘wise’ (cf. Surowiecki, 2004), successfully aggregating dispersed information.

In the current work, we have studied belief dynamics under an endogenous network formation process.
In particular, we have assumed that agents strengthen their ties to other agents based on the criterion of
‘past performance’ such that agents increment their trust weights to whoever has been ‘close enough’ to
truth for a current topic. We have, moreover, assumed that agents are multiply biased in that they are
not only susceptible to persuasion bias — the simplifying DeGroot learning rule — but also have biased
initial beliefs (the possibly non-social, ‘intelligence-based’ substrate of beliefs), and commit several other
sins of reasoning, such as being biased toward members of their in-group and motivated to disassociate
from members of their out-group, being motivated to conform with the beliefs of their reference group,
or overrating beliefs that are close to their own. Our goal has been to outline situations under which
collective failure (or at least, ‘failure of wisdom’) can obtain, even though the potential for wisdom —
dispersed correct information — is assured. Thus, our work was also in part targeted at the recent
‘optimism’ concerning biased (‘näıve’) learning in social networks and crowd wisdom (e.g., Golub and
Jackson, 2010), which has also been challenged by experimental research (cf., e.g., Lorenz et al., 2011).

As to our results, under the standard DeGroot learning model, we have seen that wisdom can fail if
there are sufficiently many agents with biased initial beliefs such that they, still, have positive probability
of being close to truth. The intuition behind this result is that even if the biased agents have small, but
positive, probability of ‘guessing’ truth, then, if they are sufficiently many — such that many of them will
still be close to truth — the biased agents can, in total, receive large enough weight mass from all agents,
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whence they may become arbitrarily socially influential, leading all of society to the expected value of a
biased variable, away from truth. This result may be thought of as based on the bona fides bias, which
says that agents do not give up the assumption that their own (initial) beliefs are unbiased and that
others’ beliefs share this property with their own, even despite potential collective failure, from which it
may be motivated that agents continuously apply their trust weight incrementing rule (to all agents). In
the conformity model, wisdom may fail even when the biased agents have zero probability of being close
to truth and when their number is small, provided that the unbiased agents are sufficiently conforming.
We might take this as an argument for why even ‘blatantly’ and repetitively false propaganda could
work. A necessary condition for this result is that agents want to conform to reference groups including
even biased and completely unknowing agents (which might be justified on grounds/biases such as truth-
unrelated prominence, e.g., due to political power or popularity). In the opposition model, wisdom can
fail even if all agents’ initial beliefs are unbiased and, in addition, arbitrarily close to truth, merely as a
consequence of agents being attracted by contrarian forces — their in-groups, on the one hand, which
attract them toward truth, and their out-groups, on the other, from which they want to disassociate.
In the homophily model, wisdom can fail because agents are, again, influenced by antagonistic forces —
truth, on the one hand, and agents with similar beliefs, on the other. Hence, biased agents’ beliefs may
cluster, if they form a homogenous group, and unbiased agents’ beliefs may also cluster, so that some
agents would become wise and others not.

Concerning future research directions within our context, of course, endogenizing several (more) of
the parameters of the DeGroot learning models that we have discussed might be of interest. In the
current work, we have solely endogenized the social network, without explaining, for example, where
in-group/out-group antagonisms actually come from or how conformity may develop and how reference
groups evolve. The endogenizing of such parameters would plausibly require psychological and socio-
economic motivations that are independent of the criterion of ‘past performance’. Moreover, in our
model, we have generally assumed that agents are homogenous with respect to many dimensions of
attributes such as their truth tolerances η, trust weight increments δ, etc., and a heterogenous setup may
provide further insight. Finally, introducing strategic agents (cf., e.g., Anderlini, Gerardi, and Lagunoff,
2012), that potentially have incentives to deliberatively mislead others, might be a promising research
direction to incorporate in our general setup of social learning and collective wisdom/failure.

Appendix 2.A Proofs

Standard model

Lemma 2.A.1. If matrix A ∈ Rn×n has identical rows with row sum s =
∑n
j=1Aij , then At = st−1A

for any t ≥ 1.

Proof. Follows by induction.

Lemma 2.A.2. Consider any n× n matrix A of the form

A =


β α . . . α
α β . . . α
... . . .

. . .
...

α α . . . β

 (2.A.1)

with α, β ∈ R. The eigenvalues of matrix A are given by λ1 = β + (n− 1)α and λ2 = · · · = λn = β − α.

Proof. We first consider the determinant of A = A(n). Subtracting the second row from the first, we
find det(A(n)) = (β − α) det(A(n − 1)) + (β − α) det(B(n − 1)), where B(n) is the n × n matrix with
[B(n)]ij = [A(n)]ij for all i, j with (i, j) 6= (1, 1); for (i, j) = (1, 1), we have [B(n)]ij = α. Proceeding
analogously as for A(n), we find det(B(n)) = (β − α)n−1α. Therefore,

det(A(n)) = (β − α)n−1
(
β + (n− 1)α

)
.
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Now, consider the characteristic polynomial of A(n); it is χ(λ) = det(A− λIn). Note that A− λIn is a
matrix of the form (2.A.1). Hence, its determinant is given by

χ(λ) =
(

(β − α)− λ
)n−1(

β + α(n− 1)− λ
)
.

This concludes the proof.

Wisdom of crowds under initial beliefs centered around truth

The following are results from Golub and Jackson (2010). They state conditions under which a growing
population, parametrized by its size n, converges to truth µ under the assumption that agents receive
initial belief signals that are centered around µ (as in (2.6.1)). The statement of the below results is that
agents become (ε-)wise (for any ε > 0) if and only if the influence of the most influential agent converges
to zero as n increases, whereby an agent’s influence is given by his social influence, as we have discussed
above and as we define below. In undirected networks (Wij = Wji for all i, j ∈ [n]) with uniform weights,
this condition is tantamount to all agents’ relative degrees (the number of links they have to other agents
divided by the total number of links in the network) converging to zero as n becomes large. Hence, in
this setup, an obstacle to wisdom would be the circumstance when each agent who newly enters society
assigns, e.g., a constant fraction of his links to a particular agent, who would then become excessively
influential.

Remark 2.A.1. If a social network W induces a consensus, then limiting beliefs can be represented
as b(∞) = sᵀb(0), for a non-negative vector s with

∑n
i=1 si = 1 which we call the social influence

vector and si agent i’s influence. The influence vector is given as the unique normalized unit-vector s
which satisfies s = Wᵀs (i.e., s is the normalized unit-eigenvector of Wᵀ corresponding to the eigenvalue
λ = 1).

Now, as in Golub and Jackson (2010), we parametrize social networks W by their population size n,
which we denote by W(n); we also parametrize other quantities such as limiting beliefs of a set of agents
by population size n (here and in the following, we omit reference to topics k for notational convenience).
Moreover, we denote a society by the sequence

(
W(n)

)
n∈N. We restate the following lemma and the

proposition from Golub and Jackson (2010), which they list as Lemma 1 and Proposition 2.

Lemma 2.A.3 (A law of large numbers). If
(
s(n)

)
n∈N is any sequence of influence vectors, then

s(n)ᵀb(0;n)→ µ as n→∞

(where convergence is in probability or almost surely) if and only if s1(n)→ 0, where we assume, without
loss of generality, that s1(n) ≥ s2(n) ≥ · · · ≥ sn(n).

Proposition 2.A.1. If
(
W(n)

)
n∈N is a sequence of networks, each inducing a consensus, then the

underlying agents become (ε-)wise (for any ε > 0) as n → ∞ if and only if the associated influence
vectors are such that s1(n)→ 0 as n→∞.

We now argue informally that the proposition entails convergence to truth in the situation where
agents’ initial beliefs are centered around truth as in (2.6.1) and in our setup of endogenous weight
formation.29 Namely, we first argue that an agent’s influence si is directly inversely proportional to his
variance σ2

i . Although a proof thereof would require technical sophistication, the claim appears very
intuitive since influence si captures weight mass assigned to an agent by other agents (in addition to
these agents’ influence; cf. DeMarzo, Vayanos, and Zwiebel, 2003) and, in our setup, the weight mass
that an agent receives is directly inversely proportional to his variance σ2

i (more intelligent agents receive
weight increases more often). Next, consider networks

(
W(n)

)
n∈N where, for all n ∈ N, agents’ variances

29We assume that k is so large that each network W(k)(n) always induces a consensus. Note that, if agents are
stochastically intelligent, a consensus is reached quickly (and increasingly fast in the number of agents n), by the results
developed in Section 2.6.
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σ2
i satisfy σ2

i ≥ σ̄2 > 0 for some lower bound σ̄2 > 0.30 Then, as n → ∞, the influence of the most
influential agent certainly goes to zero since the number of agents increases (all of which are influential
in the sense that they receive weight mass from others) while the expected weight mass that the most
influential agent receives is bounded.

Varying weights on own beliefs

Proof of Proposition 2.6.9. Since W = W(k) converges for all initial belief vectors b(0), there exists a

matrix W∞ such that limt→∞Wt = W∞. To prove the proposition, show that
∏t−1
s=0 W(λs) converges

to W∞ as t→∞, whereby W(λ) =
(

(1− λ)I + λW
)

and where b(t) =
(∏t−1

s=0 W(λs)
)
b(0) according

to (2.6.4). Proceed exactly as in DeMarzo, Vayanos, and Zwiebel (2003).
Define the random variable Λt to be equal to 1 with probability λt and zero otherwise. Assume also

that Λt are independent over time. Define the random matrix Zt by Zt =
∏t−1
s=0 W(Λs) = W

∑t−1
s=0 Λs .

Then E[Zt] =
∏t−1
s=0 W(λs). By the Borel-Cantelli lemma, if

∑∞
t=0 Pr[Λt = 1] =

∑∞
t=0 λt =∞, then

Pr[

∞∑
t=0

Λt =∞] = Pr[Λt = 1 infinitely often] = 1.

Since the matrix Wt is bounded uniformly in t, the dominated convergence theorem implies that

lim
t→∞

t−1∏
s=0

W(λs) = lim
t→∞

E[Zt] = lim
t→∞

E[W
∑t−1
s=0 Λs ] = W∞.

Opposition

Lemma 2.A.4. Consider any matrix of the form (2.7.4) with a, b, c, d > 0 and such that
∑n
j=1 |Aij | = 1

for all i = 1, . . . , n. Let n1 = 1. Then, the characteristic polynomial of A is given by

χ(λ) = det(A− λIn) = (−λ)n−2
(
λ2 − (a+ (n− 1)d)λ+ (n− 1)(ad− bc)

)
= (−λ)n−2(λ− 1)(λ− q),

where q = (n− 1)(ad− bc) = a− 1 + (n− 1)d.

Proof. Expanding the determinant along the last row (and subtracting the second-to-last row from the
last), we find that the determinant det(Bn) of Bn = An − λIn, with An = A, is given by

−λ det(Bn−1)− λ det(Cn−1)

whereby Cn = An − λIn, except for the entry in row n and column n, which is [Cn]nn = Ann. The

determinant of Cn can easily be found to be (−λ)n−2 ·
(

(a−λ)d−bc
)

. Then solving det(An) inductively

leads to the required solution. Finally, the factorization of the quadratic polynomial results from the
fact that A has one eigenvalue of 1, as can readily be checked.

From Lemma 2.A.4, we can infer that matrix A from (2.7.4) has n− 2 eigenvalues 0, one eigenvalue
of 1, and one eigenvalue q, which is a real eigenvalue. Moreover, all eigenvalues of A are bounded from
above by 1 (cf. Eger, 2013, Proposition 6.3). Assume that q were −1. Then

a− 1 + (n− 1)d = q = −1 ⇐⇒ a+ (n− 1)d = 0 ⇐⇒ a = −(n− 1)d,

whence a is negative, which contradicts a > 0. Thus, assume q were +1. Then

a+ (n− 1)d = 2,

which contradicts a+ (n− 1)d = a+ n2d < 1 + 1 = 2 (since both b and c are positive and recall the row
sum restrictions n1a+n2b = 1, etc.). Therefore, λ = 1 is the only eigenvalue of A on the unit circle and
it has algebraic multiplicity of 1.

30Should there be no lower bound on the most intelligent agent’s variance, then this agent may become excessively
influential but his initial beliefs also become arbitrarily accurate, so that society becomes (ε-)wise simply because one agent
is arbitrarily well-informed.
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Conformity

Lemma 2.A.5. Consider In −A for an n× n matrix A. If limk→∞Ak = 0, then In −A is invertible
and its inverse is given by the Neumann series

(In −A)−1 =

∞∑
k=0

Ak.

Proof. See Meyer (2000), p.618.

Proof of Proposition 2.8.1. Our proof follows along the lines of the proof of the corresponding proposition
of Buechel, Hellmann, and Klößner (2012).

The best response s∗i of player i to the strategies s−i of the other players is given by the first order
conditions,

∂ui(si, s−i; bi)

∂si
|si=s∗i = −2(1− δi)(s∗i − bi)− 2δi

(
s∗i −

∑
j 6=i

Qijsj

)
= 0

for all i ∈ [n]. Note that the best response is unique. A strategy profile s∗ ∈ Sn is a Nash equilibrium if
and only if s∗i is a best response to s∗−i. Thus, Nash equilibria s∗ ∈ Sn satisfy:

(In −∆)(s∗ − b) + ∆(s∗ −Qs∗) = (In −∆)(s∗ − b) + ∆(In −Q)s∗ = 0.

Rewriting leads to

s∗ = (In −∆Q)−1(In −∆)b,

which is well-defined since In −∆Q is invertible by Lemma 2.A.5. Namely, we have

‖∆Q‖k ≤ ‖∆‖k ‖Q‖k ≤
(

max
i∈[n]

∣∣δi∣∣︸ ︷︷ ︸
=:δmax

)k
‖Q‖k

for any matrix norm ‖·‖. Hence,

0 ≤ lim
k→∞

‖∆Q‖k ≤ lim
k→∞

(δmax)
k ‖Q‖k = 0,

since |δi| < 1 by assumption, for all i ∈ [n], and ‖Q‖k is bounded since Q is row-stochastic. Therefore,
limk→∞(∆Q)k = 0.

Proof of Lemma 2.8.1. Consider M1 (which is M · 1), which is

D1 + (W −D)(In −∆Q)−1(In −∆)1.

It suffices to show that

R1 := (In −∆Q)−1(In −∆)1 = 1

because of row-stochasticity of W, which entails that W1 = 1.
Now, we have (In −∆Q)−1 =

∑∞
r=0(∆Q)r by row-stochasticity of Q and since |δi| < 1. Hence

R1 =

∞∑
r=0

(∆Q)r(In −∆)1 = (In −∆)1 +

∞∑
r=1

(∆Q)r−1[∆Q1−∆Q∆1]

= (In −∆)1 +

∞∑
r=1

(∆Q)r−1[∆1−∆Q∆1] = (In −∆)1 + (In −∆Q)−1[In −∆Q]∆1

= (In −∆)1 + ∆1 = 1.
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Proposition 2.A.2. In the situation of Example 2.8.2, the social influence weights x, x and y of agents
1, 2 and 3 are given by

x =
2(1− a)

4− ab− 3a
, and y =

a(1− b)
4− ab− 3a

.

Proof. The social influence weights can be found by computing M and then solving Mᵀx = x where
x = (x, x, y)ᵀ. The computation, though cumbersome, is straightforward.

Homophily

The following theorem is the ‘stabilization theorem’ of Lorenz (2005). It discusses convergence of the
opinion dynamics process b(t + 1) = W(b(t), t)b(t), where weight matrix W may depend on time t
and the current vector of beliefs b(t), as in the homophily model we have sketched. We abbreviate the
theorem to fit our needs.

Theorem 2.A.1 (Lorenz, 2005). Let (W(t))t∈N be a sequence of row-stochastic matrices. If each matrix
W(t) satisfies

(1) [W(t)]ii > 0 for all i ∈ [n] (‘each agent has a little bit of self-confidence’),

(2) [W(t)]ij > 0 ⇐⇒ [W(t)]ji > 0 (‘confidence is mutual’),

(3) there exists κ > 0 (that is independent of t) such that the smallest positive entry of W(t) is greater
than κ (‘positive weights do not converge to zero’),

then limt→∞ b(t) exists, that is, the belief dynamics process converges.

While Theorem 2.A.1 applies, in particular, to the Hegselmann and Krause models, on which our
homophily model rests, it does not apply to the latter. This is easy to see: while condition (1) in the
theorem on W(t) is satisfied in our case (due to δH > 0 and

∥∥bki (t)− bki (t)
∥∥ = 0 < ηH for any positive

ηH), both conditions (2) and (3) may be violated in our modeling. Condition (2) may be violated because
of truth related weight adjustment, which is generally asymmetric (agent i may have been true for a
topic Xk, while j may not have been true so that j increases his weight for i while i does not increase
his weight for j); and condition (3) may be violated because a positive link weight between two agents
may converge to zero in our model, e.g., when an agent i has known truth for a topic, so that another
agent j increases his link weight for i (based on truth), but i and j’s beliefs are sufficiently distinct such
that homophily, toward other agents, causes the link weight [W(t)]ji to drop to zero, as t→∞.

Appendix 2.B Experiment

Below, we list details on the experiment indicated in the introduction. In total, n = 119 subjects, all from
Amazon Mechanical Turk, participated in the experiment; not all subjects answered all questions.31 We
set a time limit for answering the 16 ‘common knowledge’ questions of 3 minutes and reimbursed subjects
with 60 US cents if they completed and submitted the questions (this required them to press the ‘submit’
button rather than to indeed answer all questions), which corresponds to an hourly wage of 12 USD.
Obviously, this was an attractive wage, since all requested slots (119) were filled within approximately
one hour. On average, individuals took 2 minutes and 25 seconds to answer all 16 questions, including
reading the instructions and optionally providing feedback, although some subjects complained that time
limits were too narrow. Below, we summarize the instructions, the questions, and give histograms of the
distributions of answers (Figure 2.16) as well as of the ‘logarithmically scaled’ data — for some questions,
individuals beliefs’ seemed to be lognormally distributed, so we provide these histograms in Figure 2.17.
We note that we — very slightly — adjusted the data when it very obviously seemed to be corrupted.
For example, one person gave as average daily temperature in Miami in July the number 8856347, which

31The data set is available upon request.
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cannot plausibly be correct; similarly, two people answered the question concerning the age of homo
sapiens sapiens as 80 years, which constitutes most probably a misunderstanding of the question.

From the histograms in Figures 2.16 and 2.17, we observe that people’s beliefs appear to be centered
around truth only occasionally. In particular, for example, the histogram for the question concerning
the average height of an adult male US American appears to be consistent with independent normal
distributions, centered around truth, as underlying subjects’ beliefs. For the question regarding the
number of official languages of the European union, the population density of Beijing, and the distance
from earth to moon, independent lognormal distributions appear as plausible. As we have already
discussed in the introduction, neither the mean nor the median are very reliable quantities for the true
values of questions, as Table 2.2 illustrates.

Instructions
Give truthful estimates on 16 questions such as “When did the first settlers arrive in America?”. Don’t
look them up, don’t google them. We’re interested in your honest estimate/guess, not in your ability to
use search engines. If you don’t know the correct answer, please try to provide your best guess. Please
answer all 16 questions.
A valid answer to the above question might be “in 1620” (if this is what you think the correct answer
is). Certainly don’t take longer than 20 seconds to answer any one question.
If your answer requires a unit such as “pounds”, “miles”, or “kilometers”, please indicate it, for the sake
of clarity.

(1) the average daily temperature in Miami in July (in Fahrenheit or Celsius)? 87.8F
(2) the population size of New York city, as of 2012? 8, 336, 697
(3) the current level of the Dow Jones stock market index? 15, 658.36
(4) the number of official languages in the European Union? 24
(5) the age of modern humans (homo sapiens sapiens) on earth?

In other words, since how long do (modern) humans exist on earth? 200, 000
(6) the year the first world war started? 1914
(7) the number of McDonald’s restaurants in the US? 12, 804
(8) the number of people per square mile (or square kilometer) in China’s capital Beijing? 3, 300/sqm
(9) the how many-th US president was Bill Clinton? 42nd
(10) the average height of an adult male in the US as of 2012? (in feet and inches or centimeters) 177.8cm
(11) the distance from earth to the moon (in miles or kilometres)? 238, 610m
(12) the number of states the United States consists of? 50
(13) the fraction of population in the US that is left-handed in percent? 10.5%
(14) the average life-span of an African elephant (in years) in the wild? 56
(15) 17− 4× 2? 9
(16) the diameter of the sun in miles or kilometers? 857, 490m

Table 2.1: Questions, to be preceded by ‘What do you think is ...’, and ‘true’ answers. Most ‘true’
answers are taken from wikipedia or similar resources.
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Figure 2.16: Histograms of answers to questions (1) to (16), top to bottom and left to right. Mean
(dotted blue), median (dashed green), and truth (solid red) indicated.

Median Mean
1% 2% 5% 10% 1% 2% 5% 10%

(1) x x x
(2)
(3)
(4)
(5)
(6) x x x x x x x x
(7) x
(8)
(9) x x x x x
(10) x x x x x x x x
(11) x x x x
(12) x x x x x x
(13)
(14) x x x
(15) x x x x
(16)

6 6 7 8 2 3 4 6

Table 2.2: Question numbers and indication whether (x) or not median or mean are within the indicated
intervals around truth.
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Chapter 3

An agent-based sorting model for
city size and wealth distributions

Abstract

We propose a new model for city size and wealth distributions in an economy. Our model is,
first, based upon agents with preferences over neighborhoods; rich/wealthy neigborhoods are
more attractive than poorer ones and agents generally want to ‘sort’ into the neighborhood
whose wealth level is largest. A second feature is that neighborhoods have an impact upon
the members of their community, which we define in terms of the neighborhood’s average
wealth level. Finally, agents are inert in the sense that they are unwilling to leave their
current neighborhood without reason and generally incur costs of relocation; and agents are
boundedly rational in that they do not anticipate/predict other agents’ behavior and in that
they perform local instead of global relocation decisions. We derive a few analytical results for
this setup which characterize our model as one where ‘the poor are chasing the rich’, amongst
other things. Moreover, we show by simulation that, under reasonable parametrizations, our
proposed model generates Zipfean city size distributions with coefficient alpha close to 1.
It does not, however, by itself, generate Pareto wealth distributions. To this end, we add
a stochastic component to individual agents’ wealth levels, which we specify such that it
either entails linear or exponential average growth. Nontrivially, this seems to lead to the
‘correct shape’ of the wealth distribution function for both the linear and exponential growth
paradigms, but with ‘suitable’ coefficient beta only under the exponential growth implication.

3.1 Introduction

One version of Zipf’s law for city sizes states that if one ranks cities by size and plots city size versus
rank in log-log-scale, one obtains, roughly, a straight with slope −α = −1, where we refer to α as the
Zipf coefficient. In Figure 3.1, we illustrate the law, using city size data for the United States for the
year 2009. One sees that the fit is not perfect, with some deviation particularly for the largest cities
New York, Los Angeles, and Chicago, but overall seemingly pretty good and an excellent rule of thumb.
Remarkably, a related law apparently holds for the distribution of wealth among subjects in economies.
If one plots the probability that an individual has at least wealth level w against w in log-log-scale,
one obtains, for the ‘rich’ tail of the distribution, again, a straight line, this time with slope between
−β = −1 and −β = −3, where we call β the Pareto coefficient. This relationship, which we exemplify in
Figure 3.2, is termed Pareto’s law for wealth distributions. Both laws were discovered around the turn
of the 19th century and, although prima facie having different interpretations, can both be phrased as
‘rank size’ rules; for Pareto’s law, we have that if one ranks richest subjects by wealth and plots wealth
level versus rank in log-log-scale, one obtains a straight line with slope between −1/3 and −1/1 = −1
(see below). The ‘rank size’ formulation allows a simple conceptualization; assuming a Zipf coefficient
of 1 and a Pareto coefficient of 2, then, the largest city in an economy has about double the size of the
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Figure 3.1: City size distribution of the United States for 2009, from http://economix.blogs.nytimes.

com/2010/04/20/a-tale-of-many-cities/.

Figure 3.2: Wealth distribution of the United Kingdom for 1996, reprinted from Drăgulescu (2003).

second largest, three times the size of the third largest, etc. Accordingly, the wealthiest individual in
an economy is about

√
2 times wealthier than the second wealthiest,

√
3 times wealthier than the third

wealthiest, etc.
The two laws have received considerable attention ever since their discovery, particularly from ph-

ysisicts, economists, and statisticians, where the leading question is about the mechanism(s) generating
such outcomes. Two stochastic explanations for the Zipf and Pareto phenomena are as follows. For
city sizes, Simon (1955) found that a ‘preferential attachment’ rule can imply the observed regularity;
cities grow proportionally to their current size, that is, larger cities obtain more new inhabitants. For
wealth, a distribution process in analogy to those observed in statistical physics has been suggested (cf.
A. Chatterjee, Chakrabarti, and Manna, 2003) where at each time step two randomly selected individuals
‘gamble’ about an individually determined share of their current wealth, leaving total wealth unchanged.
While these models may be at least partly convincing and undoubtedly appealing in their abstractness
and simplicity, they do not tell us about instrinsic motivations and preferences of the agents involved in
their setups. Some other models address this issue, for example, by defining optimizing economic agents
that, in the case of cities, relocate, e.g., on the basis of preferences defined over population density; for
example, agents may rejoice in companionship, but certainly want to avoid overcrowding.

In the current work, we undertake to propose a new model for explaining both city size and wealth
distributions in an economy. Our model is, first, based upon agents with preferences over neighborhoods;
rich/wealthy neigborhoods are more attractive than poorer ones and agents generally want to ‘sort’
into the neighborhood whose wealth level is largest.1 A second, separate but related, feature is that

1The fact that human agents, or more generally, biological organisms, undertake to settle in rich ecological neighborhoods
seems self-evident to us. We emphasize with a few examples. First, immigration from ‘third-world’ countries, such as Africa,
to the industrialized nations, such as the United States, Europe, etc. Secondly, in the animal world, usually rivers, food-rich
habitats, etc., exogenous sources of wealth (sometimes also called “locational fundamentals”, cf. Krugman, 1996), attract
multitudes of organisms. Thirdly, the ‘poor chasing the rich’ literature (cf. Tiebout, 1956; Strahilevitz, 2005; Bucovetsky

http://economix.blogs.nytimes.com/2010/04/20/a-tale-of-many-cities/
http://economix.blogs.nytimes.com/2010/04/20/a-tale-of-many-cities/
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neighborhoods have an impact upon the members of their community, which we define in terms of the
neighborhood’s average wealth level; we take this circumstance as one justification of why agents would
want to sort into richer neighborhoods. Moreover, such neighborhood or peer effects are well-known
and well-documented in economics (cf. Dietz, 2002; Falk and Ichino, 2006, etc.) and, for example, in,
e.g., businesses it is estimated that income and productivity of individual workers increase considerably
as the average income and productivity of co-workers increase (cf. Ichino and Maggi, 2000; Shvydko,
2008). Finally, agents are inert in the sense that they are unwilling to leave their current neighborhood
without reason and generally incur costs of relocation; and agents are boundedly rational in that they
do not anticipate/predict other agents’ behavior — they play best responses to the current ‘state of
affairs’ without anticipating changes — and that they perform local instead of global relocation deci-
sions.2 We show by simulation that, under reasonable parametrizations, this model generates Zipfean
city size distributions with coefficient α close to 1. It does not, however, by itself, generate Pareto wealth
distributions (since, in the long run, our model tends to imply a too equal distribution of wealth among
agents, as we also argue from analytical results we derive in Section 3.5, see below). To this end, we add
a stochastic component to individual agents’ wealth levels, which we specify in Section 3.6 such that it
either entails linear or exponential average growth. Nontrivially, while not infringing upon the Zipfean
city size distribution law, this seems to lead to the ‘correct shape’ of the wealth distribution function —
straight line for the rich tail in log-log-scale, exponential regime for the poor tail, see below — for both
the linear and exponential growth paradigms, but with ‘suitable’ coefficient β only under the exponential
growth implication.

While we believe our model to be abstract and general enough to potentially apply to the migratory
behavior of many living organisms, we note that it is, at the same time, rooted in economic theory.
For example, the classical Tiebout sorting model (cf. Tiebout, 1956) holds that individuals sort into
neighborhoods based upon the latters’ attractiveness (in terms of taxes, public goods, etc.). Moreover,
as indicated already, neighborhood effects, or, more specificially, peer effects, have been well-studied in
economics and may include such phenomena as status formation motives, aversion to pay inequality,3

learning, or exogenous effects due to environmental characteristics of an area (cf. Manski, 2000).
Our approach is, from an abstract perspective, closely related to a number of other modelings.

Schelling (1978) posits, as do we, that micro motives — individuals’ desire to live in wealthy neighbor-
hoods, in our case, vs. individuals’ desire to be close to agents of the same type, in Schelling’s model —
entail macro behavior — Zipfean city size distributions, in our case, vs. segregation, in Schelling’s model.
As in Page (1999) and Mansury and Gulyás (2007), two highly related models of ‘city formation’, we
assume that attributes defined over neighborhoods, or, ‘areas’ of space, enter agents’ utility functions
and motives to relocate.4 Novel about our approach is that we consider wealth — rather than a location’s
population density, as in the former two models — as an endogenous decision variable (e.g., rather than
exogenous beauty of places, as in Rand et al., 2003). In considering wealth as a decision variable, our
agents’ utility functions — and hence, their motivations — may also be quite different from those in Page
(1999) and Mansury and Gulyás (2007), where utility on a location’s population density may be encoded
in a quadratic function, implying, exogenously, both attractive and repulsive forces for agent relocation
decisions. In constrast, we assume that utility on wealth is monotonically increasing in wealth, whence
repulsion and attraction arise endogenously in our model, since the poor are attracted by the rich (as
they have positive utility from more wealth), while the latter want to escape the former (for the same
reasons regarding their utility functions). Contrary to the named three models, our model also incorpo-
rates (the economically well-founded concept of) neighborhood effects, so that agents’ attributes — their
wealth levels — are affected and modified over time. Our approach is, to the best of our knowledge,
one of the few, general, agent-based approaches to modeling Zipfean city size distributions and the first
model to discuss city size and wealth distributions in a unified framework.

This paper is structured as follows. In Section 3.2, we review the concept of power law distributions,

and Glazer, 2010) has as key insight that people care for the average income or wealth in the community in which they
live for at least three reasons: status, peer groups, and taxes; see also our discussion below.

2Agents can only relocate within a pre-defined radius of their present location as in the model of Mansury and Gulyás
(2007).

3Sometimes also referred to by the phrase ‘Keeping up with the Joneses’.
4Our model, like those of Schelling (1978), Page (1999), and Mansury and Gulyás (2007), does not include economic

variables — such as wages, land prices, etc. — except for wealth.
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of which the Zipf city size and the Pareto wealth distributions are special cases, in more detail, and
discuss empirical facts about city size and wealth distributions across countries. In Section 3.3, we more
thoroughly outline related work, which includes economic models, in a narrow sense, as well as models
based on stochastic random growth processes. In Section 3.4, we outline our model mathematically and
discuss its individual components, whereafter we present a few intuitive analytical results about it in
Section 3.5. Our first result is that our model implies a ‘poor chasing the rich’ scenario without (pure
strategy Nash) equilibria, as we will render more precisely then, and our second result is a ‘convergence in
wealth’ tendency inherent in our modeling due to the neighborhood effects. We also briefly consider the
case when agents are slightly more rational (or, less ‘myopic’) than we have assumed in our modeling,
and attempt to derive city size distributions implied by our framework for small values n of agents,
which are the primary goal of this work. Because the mathematics to derive these for arbitrary values
of n escapes us, we resort to simulation in Section 3.6, where we detail outcomes under a variety of
different model calibrations. Finally, in Section 3.7, we conclude. In the apppendix, we derive one of our
results, convergence of agents’ wealth levels, under the assumption of agents optimizing in continuous
time, showing that it agrees with the discrete time result.

3.2 Zipf’s law, Power law distributions, and empirics

After briefly reviewing the concept of power law distributions, of which the Zipf and Pareto distributions
are special cases, we address in more detail empirical distributions of city sizes and of wealth.

Zipf and power law distributions

Generally, a power law distribution is a probability distribution of the form

p(x) ∼ x−γ , (3.2.1)

for a coefficient γ ≥ 1. Power law distributions are ubiquitious as distribution functions of social,
physical, biological, or technological systems. For example, according to Newman (2005), the cumulative
density functions (cdfs) of the following quantities, amongst many others, are claimed to follow power law
distributions: word frequencies, citations of scientific papers, web hits, copies of books sold in the United
States, telephone calls received, magnitude of earthquakes, diameter of moon craters, intensity of solar
flares, intensity of wars, wealth (of the richest individuals), frequencies of family names, and city sizes.
Of course, each of these phenomena may potentially be described by different power law coefficients, and
the power law distribution form may probably also only hold for some part of the range of variables.
Moreover, some of the examples mentioned may be specific, for instance, to particular cultures (or simply,
circumstances); e.g., power law distributions seem to hold for US American and Japanese family names
(cf. Miyazima et al., 2000), but not so for Korean family names, which apparently follow an exponential
distribution (cf. Kim and Park, 2005).

A Zipf distribution is a special kind of power law distribution with coefficient α := γ = 1.5 The
Zipf distribution form was originally discovered by George Kingsley Zipf (1902-1950) as underlying word
frequencies, but Felix Auerbach (1856-1933) is nowadays credited as the first to observe the (now-called)
Zipf regularity in the distribution of city sizes. Both for word frequencies and city size distributions,
a slightly different interpretation than the one given above, using cumulative distribution functions,
prevails in the literature. Usually, Zipf’s law is interpreted as a ‘rank-size rule’; if words or cities are
ranked in descending order according to their frequency or population size, respectively, one obtains the
following relationship

log Rank = Constant− α log Size, (3.2.2)

where α is approximately 1. In log-log-space, thus, this is as a linear relationship. One remark is in
place here; as in Figure 3.1, we find it more intuitive to regress a city’s size on its rank, although (3.2.2)
seems to be the prevailing regression equation in the economics literature and Zipf coefficients and their

5We will refer to the ‘general’ power law coefficient as γ, and call it α and β in the Zipf and Pareto case, respectively.
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ranges are usually specified in terms of the above relationship. If one regresses size on rank, one obtains
a coefficient that is, intuitively, the inverse of α above. We treat Pareto wealth distributions and their
coefficients β, as special cases of power law distributions, below.

Empirical facts about city size and wealth distributions

Since the work of Auerbach (1913) and Zipf (1949), it has generally been accepted that city size distri-
butions follow a power law with Zipf coefficient α = 1. Many (simulational) studies to this date adhere
to this ‘Zipf benchmark’ (cf. Mansury and Gulyás, 2007; Axtell and Florida, 2001, etc.). More recent
research on the empirics of city sizes, however, indicates that the coefficient for city size distributions
rather falls in an interval around α = 1.6 For example, Rosen and Resnick (1980) examine the distribu-
tion of city sizes for 44 countries in 1970; one of their main findings is that the average coefficient is 1.13,
with all of the countries in their sample having an exponent between 0.8 and 1.5. Soo (2005) confirms
most of these findings for his sample of 75 countries for the period 1970-2000, for which he estimates an
average power law coefficient of 1.10; moreover, 71 out of his 75 countries have an exponent between 0.8
and 1.5. Two further remarks are in order here. First, as Krugman (1996) and Brakman, Garretsen,
Merrewijk, et al. (1999) point out, Zipf’s law for city sizes holds best when very small cities are excluded,
and, in the United States, is most accurate for cities between 200,000 and 20,000,000 inhabitants.7 Next,
the result of a Zipf distribution for city sizes may to some degree also depend on the definition of a city;
e.g., the postulation of what is a city may partly be arbitrary and/or underlie historical contingencies,
cf. Gabaix and Ioannides (2004), Newman (2005).

Vilfredo Pareto (1848-1923) is credited as the first to quantitatively investigate the distribution of
wealth in a society. In Pareto’s original work (Pareto, 1896), he discovered that this distribution follows
a power law for large values m of wealth, that is,

Π(m) ∼ m−β , for m large enough,

where Π(m) is the distribution function giving the probability that an individual’s wealth is at least m
(cf. Richmond et al., 2006). Pareto (1896) finds power law exponents β between 1.24 (for Basle 1887)
and 1.89 (for Prussia 1852), while recent published empirical data estimates coefficients β between just
under 1 to almost 3, with an average exponent of around 2 (cf. Santos et al., 2007; Coelho et al., 2008).
Next, as mentioned, the power law distribution of wealth seemingly holds only for the richest subjects of
a society. Santos et al. (2007), Drăgulescu (2003), and others, note that the remaining range of wealth
distributions may follow other distributional laws, such as the (Boltzmann-Gibbs type) exponential or
log-normal distribution (cf. Figure 3.2). A problem arises here because the definition of ‘the richest of a
society’ is not specified but is required to quantitatively determine β from data; it is, however, common
practice to regard the top 10%, 5%, 3%, or 1% wealthiest of a society (cf. Cowell, 2011) as the ‘richest’.
Finally, it must be mentioned that, except for the Forbes magazine rankings, which are based on wealth
(fortune), most econometric studies actually use income as a proxy for wealth, as most of the available
data about personal richness comes from individual income tax declarations (cf. Santos et al., 2007).

3.3 Related literature

A multitude of different models have been proposed to explain Zipf’s law for city sizes, on the one
hand, and wealth distributions in an economy, on the other. These models often stem from very different
scientific fields, whereby a large fraction of approaches is based on random stochastic processes. Newman
(2005) summarizes some of the best known and widely applied stochastic mechanisms that have been
proposed to generate power laws. Among them is the Yule process, which was originally introduced in

6To make things worse, Benguigui and Blumenfeld-Lieberthal (2007) observe that, for several countries, it seems that a
non-linear function in log-log space is a better fit to city size distributions than a linear function.

7This point is also made by Rossi-Hansberg and Wright (2007), who observe that, in contemporary city size data, small
cities are under-represented and big cities are too small, compared with the Zipf benchmark. See also Dittmar (2010),
who in addition makes the case that Zipf’s law in Europe has only established since the 1500s, because, before, “land and
land-intensive intermediates entered city production as quasi-fixed factors”, slowing down growth of big cities. In contrast,
Davis and Weinstein (2002) find that Zipf-like laws hold in Japan for time periods stretching back thousands of years.
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Yule (1925) to explain the distribution of biological taxa. It has later been generalized and adapted, e.g.,
by economist Herbert Simon to explain the distribution of city sizes; cf. Simon (1955) and, for a more
recent contribution, Gabaix (1999). Its principle mechanism is that of preferential attachment — cf.
Barabási and Albert (1999), also called Gibrat’s law in Simon (1955). This principle means that objects,
such as cities, receive additional entities, such as people, in proportion to the number of entities they
already have, that is, ‘the rich get richer’. A major flaw of the standard Yule process is that it ignores
that objects (and entities) may become extinct but, among the stochastic explanations for, e.g., city size
distributions, it has become the most widely accepted theoretical model. Problematic about the Yule
process is moreover that objects may never relocate once they have attached to a particular location (cf.
Mansury and Gulyás, 2007). Combination of exponentials, whereby a quantity of interest — such as city
sizes, or more generally, sizes of biological populations — is exponentially related to an exponentially
distributed random variable — such as time of death of the organisms constituting the populations —
may also entail power law distributions, cf. Reed and Hughes (2002).

Concerning wealth distribution models, a few important models have been developed within the
field of so-called econophysics, many of which are analogous to models of collisions between molecules as
considered in statistical physics. Here, wealth is assumed to be exchanged between two randomly selected
economic agents like the exchange of energy between two molecules, including the law of conservation of
energy; what one agent wins, the other loses. In pure gambling games (cf. Gupta, 2006), the sum w(t)
of the wealths of two agents i and j at time t is at disposal and a random draw ε ∈ [0, 1] determines the
share of w(t) that both agents have in the next period,

wi(t+ 1) = ε[wi(t) + wj(t)],

wj(t+ 1) = (1− ε)[wi(t) + wj(t)].

Such forms of interactions between agents lead to Boltzmann-Gibbs type exponential distributions in
individual wealth but variations thereof, incorporating savings of agents, may lead to other distributions,
such as the power law distribution, cf. the models of A. Chatterjee, Chakrabarti, and Manna (2003),
Slanina (2004), etc. Several network models of wealth distribution that successfully reproduce the wealth
power law coefficients have also been proposed, i.e., models in which agents live on networks and exchange
or distribute wealth, cf. Dorogovtsev and Mendes (2003), Coelho et al. (2008), Santos et al. (2007). A
more complete overview is, for instance, provided in Chen (2011).

Of course, problematic about all the above models, from a microeconomic viewpoint, is that — while
they are certainly elegant and appealing in their generality and abstractness — the models do not deduce
their results from individual agents’ preferences over outcomes, as is one of the basic tenets of modern
microeconomic theory. Other models rest more thoroughly on economic principles. Axtell and Florida
(2001), for example, hold that city and firm sizes are both Zipf distributed and inherently correlated.
In fact, they claim that in pre-industrial times, city size distributions were less skew than they are now
and that there “are deep and important connections between firm and city size distributions”. Their
model rests upon the interaction of workers and firms, where a city is in their model defined as an
agglomeration of firms. Workers form firms, and firms select locations, but workers may also change
between firms when they find it welfare-improving. Economically, workers are driven by motives of
providing effort for team production and may join another firm if this increases their utility; decisions of
individual workers to change firms may have influence on other team members. The authors show that
the city size distributions obtained from their experiments are centered around ‘true’ Zipf distributions,
defined by a coefficient of α = 1. A few interesting macroeconomically founded models, aimed at
generating Zipf city size distributions, have also been proposed. Duranton (2002)’s modeling approach
to city size distributions rests on Grossman and Helpman (1991)’s quality-ladder model of growth, which
assumes innovation driven technology shocks as sources of city and industry formation and development.
Cities grow or decline as they win or lose industries following new innovations. So small innovation-
driven technology shocks are the main engine behind the growth and decline of cities. The model
matches both the empirical distributions of US and French city sizes, as opposed to an abstract ‘Zipf
benchmark’ of 1, which themselves are considerably dissimilar, when key parameters are calibrated
accordingly. The new economic geography model of Brakman, Garretsen, Merrewijk, et al. (1999),
which extends Krugman (1992)’s general equilibrium location model by the introduction of external
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diseconomies, congestion costs, etc., and rests upon Brakman, Garretsen, Gigengack, et al. (1996),
requires an “industrialization” setting in order to generate Zipf coefficients near 1. Pre- and post-
industrialization scenarios are associated with coefficients larger than 1; see also Gabaix and Ioannides
(2004) and Mansury and Gulyás (2007) for more extensive overviews and additional references.

Equilibrium-based wealth distribution models are offered, among many others, by Wang (2007), who
applies a stochastic consumption rule which captures precautionary savings motives to a self-insurance
model with inter-temporally dependent preferences, Quadrini (2000), and S. Chatterjee (1994), who
investigates wealth distribution in a neoclassical growth model, for example. All these papers do not try,
however, to generate power law distributions for wealth distributions, but rather focus on ‘secondary’
characteristics of wealth distributions, such as skewness, wealth concentration, inequality, etc. Fiaschi
and Marsili (2009) study the equilibrium distribution of wealth in a macroeconomic model with firms,
households, and government taxes and find a Paretian law in the top tail of the wealth distribution
function in case of incomplete markets. Benhabib, Bisin, and Zhu (2011) also find a Pareto distribution
in the rich tail of the wealth distribution function in their overlapping generations model; see also Chen
(2011), and others.

An issue with the afore-mentioned economic models, from our perspective, is that many of them
rely on quite demanding assumptions regarding the structuring of society, such as the existence of firms,
workers, industries, ‘technology shocks’, ‘industrialization’, etc. More parsimonious economic frameworks
are discussed, for instance, by Krugman (1996) — who focuses on the tension between attraction and
repulsion (in his terminology, centripetal and centrifugal forces) as sources of city formation — Schelling
(1978) and Page (1999). In Schelling (1978)’s model — whose general motivation is to derive ‘macro
behavior’ from ‘micro motives’, which Schelling (1978) considers a general structuring principle — two
types of agents (black vs. white, male vs. female, etc.) live on a two-dimensional grid. Each type requires
a minimum number of agents of the same type in his neighborhood8 — and when this threshold is not
reached, the agent randomly relocates to a new grid place. One of the model’s surprising results is that
segregation is likely to emerge even when agents are tolerant toward the other type. Page (1999) models
the emergence of cities by assuming preferences of agents, distributed on a two-dimensional grid as in
Schelling (1978)’s model, over a location’s population and its separation (that is, its average distance to
other agents) and shows that ‘cities’ form under such preferences; similarly as we do, he derives both
analytical as well as simulational results for his modeling. Neither Krugman’s, Schelling’s, nor Page’s
approach compare resulting city size distributions, however, to a ‘Zipf’ benchmark.9

Mansury and Gulyás (2007)’s model, in contrast, aims at explicitly deriving Zipf city size distri-
butions. In their modeling, population density is, as in Page (1999), the decision variable for agents’
migratory behavior; more precisely, quadratic preferences of agents over the population size at any given
grid point are assumed such that agents rejoice in companionship but want to avoid overcrowding. They
derive a Zipf distribution for city sizes under certain restrictions on agents’ spatial reach. In Rand et al.
(2003), agents have preferences over a location’s natural (and exogenous) beauty and its distance to
‘service centers’; under their parametizations, the authors note a power relationship between frequency
and cluster size, that is, a Zipf-like relationship.

A non-stochastic agent-based wealth distribution model is, for example, Wilensky (1998)’s netlogo
model, adapted from Epstein and Axtell (1996)’s sugarscape model. In this model, agents accumulate
grain, their wealth, on a two-dimensional grid, while attempting to maximize their wealth. Agents
have life-expectancy and produce off-spring on death. This model typically produces power law wealth
distributions.

3.4 Model

We first succintly present our model and its basic terminology in an abstract manner, whereafter we
elaborate on the importance of each of its aspects, thereby illustrating more concretely their possible
realizations. We deliberately keep the model general, first, before discussing a concrete version of it in
the results section, Section 3.6.

8This model has some similarity with Conway’s ‘game of life’ (cf. Gardner, 1970) model.
9Of course, Schelling (1978) does not even interpret his objects as ‘cities’.
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As mentioned, our model assumes that agents optimize their wealth structure, whereas other models
attempting to reproduce the emergence of cities (or similar entities), or, more particularly, city size
distributions, rely on other decision variables, such as density (cf. Mansury and Gulyás, 2007; Page,
1999) or homophily (cf. Schelling, 1978). In Section 3.4, we briefly discuss how these quantities could
be incorporated in our model, although we do not include them in the current exposition, for reasons of
parsimony.

Setup

A set of agents (or players) [n] = {1, 2, . . . , n}, for n ≥ 2, inhabits a world — which we also refer to
as grid or lattice — X ⊆ Nk, for k ≥ 1. Only a fraction s ∈ [0, 1] of all places (or points) p ∈ X are
inhabited, the remaining are empty — we remark that each position p ∈ X may either be empty or
is otherwise occupied by a single agent. Each agent i has payoff, which we refer to as his wealth, Yi,t
in periods t = 0, 1, . . . , T . Payoffs are determined by the agent’s current payoff and his environment’s
payoffs according to

Yi,t+1 = Yi,t + δ(Ȳpi,t − Yi,t) + εi,t+1 = (1− δ)Yi,t + δȲpi,t + εi,t+1, (3.4.1)

where δ ∈ (0, 1) is the adaption rate, Ȳpi,t is some ‘average’ payoff at agent i’s location pi ∈ X at time t,
and εi,t+1 is a random component. Generally, the average payoff Ȳpi,t at position pi, which summarizes
‘average’ wealth ‘in the neighborhood’ of pi, is determined according to

Ȳpi,t =
∑
j∈[n]

wpi,pjYj,t, (3.4.2)

where wpi,pj ≥ 0 and
∑
j∈[n] wpi,pj = 1. We interpret the weight wpi,pj as the influence of an agent j,

at position pj , on the average wealth of location pi, at which agent i resides. We generally assume, as
indicated in our notation, that these weights depend on the (relative) positions of agents. Figures 3.3
and 3.4 schematically illustrate our model’s basic setup.

Y1 = 100 Y2 = 80 Y3 = 10

Ȳp1
= 90 Ȳp2

= 90 Ȳp3
= 10

Figure 3.3: World X as a finite one-dimensional grid. For each position p ∈ X, we indicate whether
it is occupied or not. We also indicate average wealth levels Ȳp,t for the occupied places. Here, Ȳp,t is
determined by uniformly averaging neighbors’ wealth levels within one unit of distance to the current
place p.

Y1 = 100 Y2 = 80 Y3 = 10

Ȳp1
= 90Ȳp2 = 90 Ȳp3 = 10

Y1 = 98 Y2 = 82 Y3 = 10

Ȳp1 = 90Ȳp2 = 90 Ȳp3 = 10

Figure 3.4: Same setup as in Figure 3.3. Once all agents have made their relocation decisions, their
wealth levels are updated via Equation (3.4.1). Here, we let δ = 0.2.

Relocation Dynamics

All agents receive random initial wealth Yi,0, for i = 1, . . . , n. Then, for all periods t = 1, . . . , T , they
solve the following maximization problems

max
p∈X

Et[uY (Yi,t+1)], (3.4.3)
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where uY : R→ R is a utility function on wealth and Et[·] denotes the (conditional) expectation operator,
conditional on information available at time t. In other words, at time t, agents search for the positions
p on grid X that promises highest expected utility in period t+1. Crucially, we assume that agents have
limited horizon and solve maximization problem (3.4.3) by playing a myopic best response to the world
as it is at time t and, more precisely, at the time point of their relocation decision:10 of all currently free
positions in world X, agent i chooses the one with the current highest utility, which would, in fact, be a
utility maximizer for period (t+ 1) wealth of agent i provided that, subsequent to agent i’s decision, all
other agents remained at their position prior to i’s relocation decision.11 If uY is non-decreasing (“more
wealth cannot be worse”), this strategy has an obvious solution since Yi,t+1 has only one component
which is not determined exogenously at time t, namely Ȳpi,t.

12 Thus, in period t, once it is her turn to
relocate, agent i chooses position p ∈ X\O — where O is the set of occupied places in X — with the
current highest average wealth level Ȳp,t. Since Ȳp,t summarizes average wealth ‘in the neighborhood of
p’, we interpret agent i’s choice as a choice for the ‘wealthiest’ neighborhood. Importantly, the order
in which agents are allowed to choose their positions in period t is determined randomly; agents who
move later make more ‘informed’ decisions.13 Wealth levels are adapted, via rule (3.4.1), only after all
n agents have made their relocation decisions. Figure 3.5 schematically illustrates agent 3’s situation
when deciding to relocate.

Y1 = 100 Y2 = 80 Y3 = 10

Ȳp = 10 Ȳp = 55 ∅ ∅ Ȳp = 45 Ȳp = 10 Ȳp = 10

Figure 3.5: It is agent 3’s turn to make a relocation decision. The position p immediately to the left
of agent 1 has currently highest average wealth (under the assumption that agent 3 would move to this
position) — 100+10

2 = 55 — so agent 3 myopically maximizes her expected utility if she relocates from
her current position to p. ‘Unreachable’ positions, i.e., because they are occupied, are indicated by ∅.

To avoid ‘inflationary’ movements and to account for individuals’ ‘inertia’, we introduce positive
moving costs

c : X2 → R≥0, c : (p, q) 7→ c(p, q).

This changes the optimization conditions only slightly; agents now solve the utility maximization prob-
lems

max
p∈X

Et[uY (Yi,t+1)− c(pi, p)] (3.4.4)

where pi is agent i’s position prior to her relocation decision. Again, agents solve this problem in a
myopic best response manner. Moreover, as an additional aspect of ‘bounded rationality’, we generally
restrict agents to conduct a local search for optimal grid positions instead of a global search; i.e., they
may be restricted to choose positions in the vicinity of their current habitat,14 which can be modeled by
letting moving costs be infinite for distant places.

As we have mentioned, when all n agents have moved — some may have remained at the position
they were occupying before — their wealth levels are updated via Equation (3.4.1). We summarize the
relocation dynamics in Algorithm 1: first, agents receive random initial wealth levels (line 3), and then,

10Our model shares this assumption with that of Page (1999) or Mansury and Gulyás (2007).
11Agent i assumes that the world stays as it is except for her own hypothetical movement. Otherwise, if this was not

considered, agents would avoid ‘empty regions’ as these have low average income values.
12The variable Ȳpi,t is not exogenously determined at time t since the weights wpi,pj depend on the position of agent i

relative to agent j.
13The assumption of random movements is the same as in Page (1999). He also, in a footnote, discusses incentive based

asynchronous updating, whereby those that gain most from relocating are allowed to move first, which may significantly
alter the relocation dynamics.

14This also reduces computational burden, in the simulations.
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for a total of T periods, relocate by playing best responses as described (lines 5-7), whereafter their
wealth levels are updated (lines 8-10).

Algorithm 1 Relocation Dynamics (RD)

1: procedure RD(T, n) . T is the number of periods, n the number of players
2: t← 0
3: Yi,t ← Zi,t where Zi,t is an iid random draw from a distribution with cdf FZ , for i = 1, . . . , n
4: while t < T do
5: for i ∈ [n] in random order do
6: Myopically solve optimization problem (3.4.4) by choosing p ∈ X\O that maximizes Ȳp,t− c(pi,p)

δ

7: end for
8: for i ∈ [n] do
9: Update Yi,t via Equation (3.4.1) to obtain Yi,t+1

10: end for
11: t← t+ 1
12: end while
13: end procedure

Discussion of the model

To specify the agents’ world X ⊆ Nk, in the agent-based models that we have reviewed, usually a one
or two-dimensional grid is assumed. For example, we might specify that k = 1 and X = {1, . . . ,m} or
that k = 2 and, e.g., X = {1, . . . ,m} × {1, . . . , l},15 for positive integers m and l, both of which would
result in a finite world, that is, with finitely many places. In our simulations in Section 3.6, we specify
X as one-dimensional because this is the simplest specification and also reduces the difficulty of defining
a city, which we generally identify as a subset C of X of contiguous occupied grid points, whereby the
exact specification of ‘contiguity’ may be problematic, however, unless the grid is one-dimensional, in
which case a contiguous set of occupied grid points is obviously any connected array of points, all of
which are occupied. In Figures 3.3 and 3.4, hence, there would be two cities — one constisting of agents
1 and 2, on the one hand, and one consisting of agent 3, on the other — if we follow our just mentioned
definition of a city.

As to the agents’ interactions, Equation (3.4.1) models the neighborhood effects discussed above.
Note that, disregarding the error, δ → 1 implies that Yi,t+1 → Ȳpi,t and δ → 0 implies Yi,t+1 → Ypi,t,
so that the adaption rate determines how strongly an agent’s wealth is affected by average wealth at
i’s current position pi and his last period wealth, respectively. Note also that Equation (3.4.1) has
appeared in several contexts in the economics and non-economics literature. For example, assuming the
random components to be zero for the moment, the equation in the form Yi,t+1 = (1 − δ)Yi,t + δȲpi,t
illustrates that an agent’s next period wealth appears as a convex combination of current period (own)
wealth and current average (‘other’ agents’) wealth at the given location. Perceived thus, the model has,
i.a., strong resemblance with Falk and Ichino (2006)’s model of worker productivity interdependence.16

Intruigingly, the wealth update equation is also a special case of Friedkin and Johnsen (1990)’s social
influence model.17 The specification is, moreover, a variant of the updating rule in self-organzing maps
(cf. Kohonen, 1984), neural networks (cf. Hopfield, 1982), etc., and thus related to the literature on

15In our model, as in Page (1999), we do not ‘connect’ the end points of X, which would result in the topology of a
torus or a ring for X. As Page (1999) points out, although the earth is round, most countries are, topologically, much more
similar to a rectangle, i.e., with bounds on each side.

16They consider just two agents, whereas we consider more generally n ≥ 2 agents. They also attach potentially non-
convex weights to own productivities and other agents’ productivities.

17And, thus, the model is also related to the literature on opinion dynamics. In fact, wealth update equation (3.4.1) is
a generalization of the belief updating equation specified in DeMarzo, Vayanos, and Zwiebel (2003). A distinction here,
however, is that, in the opinion dynamics models, opinion updating via weighted averages is usually consider a (boundedly)
rational behavior of agents, while Equation (3.4.1) does not describe a choice but non-deliberate influence. In fact, a
rational agents’ choice would be to increase her wealth indefinitely, provided that she has strictly increasing utility on
wealth, rather than to mix wealth levels with peers’.
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unsupervised self-organizing adaptive systems, etc. Its general role in this context is to increase the
similarity between two objects, usually represented as vectors in Euclidean space.

The random components in Equation (3.4.1) need not necessarily be realized as white noise, i.e., as a
sequence of zero-mean, independent random variables.18 On the contrary, as discussed in Section 3.1, we
might want to design our model in such a way that the rich are getting richer. To do so, the conditional
expectation E[εi,t+1 |Yi,t] could be specified as an increasing function of Yi,t. A simple choice, leading to
exponential growth and implementing ‘preferential attachment’, would be to let E[εi,t+1 |Yi,t] = µYi,t for
µ > 0. Note that this would introduce the following interdependencies between the ε and Y variables.

. . . Yi,t−1 → Yi,t → Yi,t+1 → . . .
↑ ↘ ↑ ↘ ↑ ↘

. . . εi,t−1 εi,t εi,t+1 . . .

In Section 3.6, we consider both a linear and an exponential growth paradigm of Yi,t, as determined by
the choice of εi,t+1.

Next, concerning the determination of average wealth, Equation (3.4.2), a particular instantiation of
the weighting scheme wpi,pj would be to set the weights uniformly within a fixed radius r > 0 of agent
i’s position pi ∈ X,

wpi,pj =

{
1

|Br(pi)∩O| if pj ∈ Br(pi),
0 else,

(3.4.5)

where Br(pi) = {x ∈ X | d(x, pi) < r} is the open ball with radius r around pi, and d is a metric on X,
such as Euclidean distance; as before, O is the set of occupied places in X. In Section 3.5, we consider
the uniform weighting scheme in the analytical results we derive, because it is a very convenient and
simple choice of weighting scheme, but generally ignores the fact that influence may decrease in distance,
even within a predefined neighborhood. Another possibility, accounting for the latter issue, is to use the
density of the multivariate normal distribution centered at pi as weighting factor,19

wpi,pj =
1

C
exp

(
−1

2
(pj − pi)ᵀΣ−1(pj − pi)

)
, (3.4.6)

where C is a normalization constant such that
∑
j∈[n] wpi,pj = 1. In the experiments in Section 3.6, we

truncate the normal distribution so that wpi,pj = 0 outside a predefined interval.
For the moving costs function c : X2 → R≥0, we assume that c is symmetric, c(p, q) = c(q, p), and

that c(p, p) = 0. Moreover, we assume that c is non-decreasing in the distance between two points
p, q ∈ X. A simple choice we make use of in the simulations is

c(p, q) = χ · ‖p− q‖ , (3.4.7)

where ‖·‖ is the Euclidean distance (absolute distance, in the one-dimensional case) and χ ∈ (0, 1) is a
moving cost parameter.

Additional variables

Of course, wealth need not be the only decision variable in our model. We generally assume that factors
defined over neighborhoods of locations influence an agent’s decision to relocate but these factors may
also include, e.g., the population density D of a position pi

20 — as has been outlined as a relevant
criterion in related work — or inequality E, e.g., defined as the absolute difference between Yi,t and
Ȳpi,t,

∥∥Yi,t − Ȳpi,t∥∥. Agents utilities uD and uE on these variables D and E could be such that uD is
quadratic, e.g., uD(x) = x − x2 (that is, low if there are too few or too many agents around), where

18As we show in Section 3.5, such a choice would not result in Pareto wealth distributions.
19The multivariate normal distribution becomes univariate when X is unidimensional, as we consider in Section 3.6.
20E.g., defined as the number of agents located around pi or, better, as a normalized value in [0, 1].
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x ∈ [0, 1], and uE is non-increasing. Then, total utility of agent i could be an additive linear utility
function u : R× [0, 1]× R→ R, separable in Y,D, and E, e.g.,

u(Y,D,E) = αuY (Y ) + βuD(D) + γuE(E), (3.4.8)

with some coefficients α, β, γ. Investigating such an extended model, e.g., by simulation, would very
likely be insightful, but we do not undertake it in the current work. Moreover, introducing additional
variables renders our model more complex, and, by Occam’s razor,21 scientific models should try to
reproduce their objectives — in our case, city size and wealth distributions — by the most parsimonious
approach that can explain them.

3.5 Analytical results

All throughout this section, we focus on the following particular setup, unless explicitly stated otherwise.
Random shocks to wealth εi,t are zero for all i and t. Moreover, assume that c(p, q) = 0 for all (p, q) ∈ X2,
i.e., moving costs are also zero such that relocating is for free. Assume, moreover, that the average income
Ȳpi,t is determined by uniformly averaging all agents’ wealth levels within a radius r > 0 of agent i’s
position pi, for i = 1, . . . , n, that is, weights are computed according to Equation (3.4.5). For our first
result, below, recall that a Nash equilibrium is a state in a game where no player has a (unilateral)
profitable deviation.

Instability and convergence of wealth levels

We now consider the following game. Assume that, rather than choosing grid places sequentially, agents
choose them simulatenously. Fix some time period t ≥ 0 and wealth levels Yt = (Y1,t, . . . , Yn,t). Then,
once each agent i has chosen her position pi ∈ X, agents receive payoffs uY (Yi,t+1), where, as before,
Yi,t+1 = Yi,t + δ(Ȳpi,t − Yi,t). We must resolve a technical issue here because, in the simultaneous move
game, it might happen that two distinct agents i and j choose the same positions pi = pj , which is
disallowed in our model. Accordingly, we simply call the corresponding strategy profile p invalid, and
otherwise we call p valid. Thus, for a choice of valid positions p = (p1, . . . , pn) ∈ Xn, we let agent i’s
utility be

Ui,Y (p; Yt) = uY (Yi,t+1)

and we let Ui,Y (p; Yt) be undefined if p is invalid. We now consider the valid Nash equilibria of the
game ([n], Xn, UY (·; Yt)), where UY (·; Yt) is the vector (U1,Y (·; Yt), . . . , Un,Y (·; Yt)), showing that this
game has, in fact, no such pure strategy Nash equilibria.

Proposition 3.5.1 (“Instability”). Let t ≥ 0 and wealth levels Yt = (Y1,t, . . . , Yn,t) be fixed. Consider
the normal form game ([n], Xn, UY (·; Yt)). If uY is strictly increasing in Y for all agents and if X and
1−s are ‘sufficiently large’, r is not ‘too big’ and weights are computed according to (3.4.5), then, unless
Y1,t = . . . = Yn,t, there are no pure strategy Nash equilibria in the normal form game as outlined.

Proof. If Y1,t = . . . = Yn,t ≡ Y , then, for all valid p and individual choices pi in p, Ȳpi,t = Y . Hence,
Yi,t+1 = Yi,t for all agents i ∈ [n] and by changing to a position p′i, agent i could not improve her payoff.
Hence, no player has a unilateral profitable deviation. Consequently, all valid p are Nash equilibria in
this situation.

Now, assume that it is not true that Y1,t = · · · = Yn,t. Without loss of generality, assume that
there is a unique richest agent with wealth Yt and that there is a second richest agent with wealth yt,
0 < yt < Yt.

22 If the agent with wealth Yt — call him Yt, for short — is within another agent’s radius
— that is, agent Yt’s position is within distance r to another agent’s position — Yt has a profitable

21Occam’s razor is a principle of parsimony, economy, or succinctness attributed to the English philosopher William of
Occam (1287–1347).

22If there are multiple richest agents, the proof follows along the same lines as the one outlined. The difference is then
that we have to distinguish whether the group of richest agents is isolated (as a group) or not.
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deviation, namely, to move out of this radius to a place where he is not within any other agent’s radius
(by assumption such a place exists, since X is sufficiently large, r is not ‘too big’ and there are enough
free places, i.e., 1 − s is sufficiently large). This is so because at Yt’s current position p, it holds that
Ȳp,t < Yt since (in the equation, C is a normalizing constant)

Ȳp,t =
∑

pj∈Br(p)

1

C
Yj,t < Yt

∑
pj∈Br(p)

1

C
= Yt,

and hence, by Equation (3.4.1), agent Yt’s wealth would be smaller in period t+ 1 than in period t if he
stayed where is his. Only moving to an isolated place can prevent this.

Conversely, if Yt is not within any other agent’s radius, agent yt has a profitable deviation. If she
stayed where she currently is, her next period payoff would be at most yt since she is the second richest
agent and the richest is not within her radius. Moving within Yt’s radius would be a profitable deviation
as then ȳ = yt+Yt

2 > yt and hence, for all positive δ, we have, by Equation (3.4.1),

yt+1 = yt + δ(
yt + Yt

2
− yt︸ ︷︷ ︸

>0

) > yt.

Remark 3.5.1. It is important to note that in the second case discussed above — Yt is not within any
other agent’s radius — not all ‘poor’ agents have a profitable deviation by moving within Yt’s radius. To
illustrate, suppose that there are 5 agents with wealth levels 1, 4, 4, 4, 5. If agents 1, 4, 4, 4 form a group
and 5 is isolated, 1 does not want to move within 5’s radius, as 1+4+4+4

4 = 13
4 > 3 = 1+5

2 . In other
words, the average wealth is higher at 1’s current position, with agents whose wealth levels are 4, 4, 4
close by, than it is at a position within 5’s radius, for an agent with wealth level 1.

Remark 3.5.2. We note that Proposition 3.5.1 is equivalent to the following statement. Let π be any
permutation on the set of agents [n] that describes movement orders, such that π(i) = τ says that agent
i is the τ -th agent, for 1 ≤ τ ≤ n, to make his relocation decision. When π is fixed, our relocating
model is a deterministic process that can fully be determined via considering the myopic best responses
played by agents to the current state of affairs. Let pt ∈ Xn be a valid profile of positions at time
t, that is, pt describes agents’ locations at time t, before relocation decisions are implemented. Then,
let Pπ be the deterministic operator that maps pt to pt+1, the profile of positions after all n agents
have conducted their relocation decisions, for a given fixed movement order, as encoded in π. Then,
as indicated, Proposition 3.5.1 is equivalent to the statement that Pπ(pt) 6= pt for any valid profile pt
and any permutation π (unless all agents have the same wealth levels at time t). In other words, the
condition of no pure strategy Nash equilibrium precisely means that the operator Pπ has no fixed points,
no matter the permutation π. This leads to our next remark.

Remark 3.5.3. By our previous remark, Proposition 3.5.1 does not merely describe a theoretical result
— non-existence of pure one-shot valid Nash equilibria in the simultaneous move game — but the
proposition implies actual consequences for the dynamics of the sequential move ‘game’. Namely, at the
beginning of each new time period t, if it is not the case that all agents have the same wealth levels,
then, by the proposition, we know that at least one agent is ‘unhappy’ with the current placement of
agents on the grid. If this agent were first to move, she would surely immediately switch to another
place. If she is not the first to choose a new position, then, if no one before her relocates, she will do so
once it is her turn. Hence, the proposition implies that, in each new time period, if not all agents have
the same wealth levels, then there will always be movement and relocations — in other words, instability
— among the agents; which is precisely what the condition pt+1 = Pπ(pt) 6= pt in the last remark
states. Moreover, Proposition 3.5.1 states that these movements are driven by wealth inequalities, and
that, more precisely, the rich want to escape from the poor in our model, the latter which are chasing
the former. Thus, the proposition furthers insight into the dynamics of actual agent relocations, in each
time period, of the model outlined in Section 3.4.

We note, however, that the proposition might be false in case positive moving costs are introduced,
for example, which might make certain relocations unprofitable.
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Rather than focussing on relocation dynamics, we now investigate wealth evolution, at least in the
restricted setting under scrutiny in this section, of the process described in Section 3.4 when T → ∞.
First, let us assume that, for some reason, all agents would remain within radius r (say, since r is
sufficiently large) for all periods t = 1, 2, . . . . Then our payoff process would evolve according to, under
Equations (3.4.1) and (3.4.5),

Yt+1 = f(Yt), f(z) = z + δ(z1− z), f : Rn → Rn, t = 0, 1, 2, . . . (3.5.1)

where 1 =

1
...
1

 ∈ Rn, Yt=(Y1,t, . . . , Yn,t), and for a vector z ∈ Rn, z denotes the average z1+...+zn
n .23

We first note that Ys = Yt for all s, t, which we could interpret as a “zero sum condition”.24 This
follows inductively since

Yt+1 = f(Yt) = Yt + δ(Yt1−Yt) =

∑n
i=1 Yi,t + δ

∑n
i=1(

Y1,t+...+Yn,t
n )− δ

∑n
i=1 Yi,t

n

=

∑n
i=1 Yi,t
n

+
δ
∑n
i=1 Yi,t − δ

∑n
i=1 Yi,t

n
= Yt.

This in turn means that Yt = Y0 for all periods t, where Y0 refers to the initial conditions (Y1,0, . . . , Yn,0).
Therefore

Yt+1 −Y01 = f(Yt)−Y01 = Yt + δ(Y01−Yt)−Y01 = (1− δ)(Yt −Y01).

Hence ∥∥Yt+1 −Y01
∥∥∥∥Yt −Y01
∥∥ = 1− δ,

which means that Yt → Y01 as t → ∞, with a linear rate of convergence, since 1 − δ ∈ (0, 1).25 This
immediately leads to our next result.

Proposition 3.5.2 (“Convergence of wealth levels”). Consider the model sketched in Section 3.4, un-
der the specializations indicated in this section (random components are zero, determination of Ȳp,t by
uniform averaging of agents’ wealth levels within radius r, zero moving costs). Assume that movement
order — who makes the first relocation decision in each round? — is determined randomly (and inde-
pendently) by a process that selects player 1 as the first player to move with probability p, for 0 < p < 1.

Then, if there are only n = 2 agents, their payoffs/wealths Y1,t and Y2,t converge to
Y1,0+Y2,0

2 as t→∞
almost surely, for their initial endowments Y1,0 and Y2,0.

Proof. We assume that Y1,0 6= Y2,0, for otherwise the proposition is trivially true. Without loss of
generality, let Y2,0 > Y1,0. By Proposition 3.5.1 and its proof, the poor agent will ‘chase’ the rich, who in
turn tries to escape. Whenever the poor is successful (when he is last to move), both players are within
distance r, so Yt+1 = f(Yt). Otherwise (when the rich is last to move), Yt+1 = Yt. So if there is a
random process determining which agent will move first, then

Yt+1 =

{
Yt with probability p,

f(Yt) with probability 1− p,

Hence, for all 0 ≤ p < 1, Yt → Y01 almost surely,26 by our previous derivations.

23This process can be analyzed by use of results from Markov chain theory — or, opinion dynamics, for that matter —
but we sketch an elementary solution in the following.

24What one agent loses in wealth, the other gains. In sum, the average remains unchanged.
25In the appendix, we prove this result when time is continuous instead of discrete as considered here.
26The convergence is “almost surely” since the probability mass of the set {a ∈ {0, 1}N | a has only finitely many 1}

under any measure that assigns positive probability to 1 is zero. In other words, if you throw a coin infinitely often, the
probability is zero that there will be only heads from some time onward.
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Remark 3.5.4. For the case of n > 2 agents, the situation is (only) slightly different. In general, it is
possible for some players to form a group first (say, in a three player setting, the poor will chase the rich),
while others “stay out” (the middle agent sticking to his position). Once a group’s wealth approaches an
average value, inter-group chasing will take place. Finally, all agents will have the same payoff almost
surely (although, in the general n > 2 agent case, this common payoff does not have to be Y0).

Remark 3.5.5. Proposition 3.5.2 is, in a sense, a counterpart to Proposition 3.5.1. By the latter, if
the process discussed in Section 3.4 is started with random initial endowments for all agents, there will
be no equilibrium, in each round of relocation decisions, whence agents will be relocating and, more
particularly, chasing each other. By the former proposition, this chasing will eventually terminate — at
infinity, at the latest — when all agents have converged to the same wealth levels. At this point, again
by the latter result, a Nash equilibrium is reached.

To summarize Propositions 3.5.1 and 3.5.2 and the corresponding remarks, in the current setup,
agents will generally relocate on the basis of wealth inequalities; in fact, the poor will be chasing the
rich. In the long-run, due to the neighborhood effects and the fact that agents cannot — e.g., exogenously
— increase their wealth levels, this chasing will eventually entail assimilation of wealth levels. When all
agents’ wealth levels are finally equal, agents will reach an equilibrium where no one, trivially, has an
incentive to deviate, that is, to relocate. We also note that our results imply that this standard model
— without, e.g., random, exogenous, shocks to agents’ wealth levels — cannot entail, at least in the
long run, a Pareto distribution for agent wealth because this requires a sufficient degree of inequality
among agents’ wealth levels. Concerning Zipf distributions for city sizes, our analysis has provided no
insights, except, maybe, that clustering tendencies can generally be expected, since most agents will
chase someone richer than them.

Remark 3.5.6. As our final remark in this subsection, we note that we may provide a kind of ‘master
equation’ for our city size and wealth dynamics process via the notation introduced in this section.
Assuming the random components εi,t to be zero, wealth and cities evolve according to, for p0 and Y0

given,

Yt+1 = (1− δ)Yt + δWpt+1
Yt,

pt+1 =


Pπ1

(pt; Yt), with probab. Π(π1),

Pπ2
(pt; Yt), with probab. Π(π2),

...

(3.5.2)

where Wpt is the matrix with entries [Wpt ]ij = wpit,pjt and Π(π) denotes the probability of drawing
permutation π : [n]→ [n] from the set of all permutations on [n]; in the random uniform case, Π(π) = 1

n! .
Here, in the notation of Pπ(pt; Yt), we have also indicated the dependence of relocation decisions on the
wealth structure.

Strategic agents

As we have mentioned before, the agents we have introduced in our model play myopic best responses to
the ‘current state of the world’. In this sense, these agents are in fact ‘short-sighted’: their best responses
may be pretty bad choices once other agents have relocated, in the current period. Moreover, even if
their choice is good for period t, another may have been preferable had periods t+ 1, t+ 2, . . . also been
taken into account. Of course, a strategic player, knowing of the short-sightedness of the other players,
could change his behavior accordingly, by prediction of the myopic players’ decisions.27 To illustrate,
consider a two-player setup where player 1 has, in some fixed period, wealth Y and player 2 has wealth
y. Assume that Y > y, so that agent 1 is the richer. Assume a situation as in the game tree shown.
Agent 1 is first to make her relocation decision, and assume that agent 1 currently resides at a position
inside a radius r of agent 2’s location. To simplify, we think of the basic choices of both agents as either
to stay at their current positions (S) or to relocate to a position inside/outside the influence range of the

27For an in-depth discussion of this general topic, see Schipper (2011).
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1

2 2

Y ′, y′ Y, y − c Y − c, y Y ′ − c, y′ − c

S R

S R S R

other agent (R) (the relocation choice of the wealthier agent can only be to escape, while that of the less
wealthy agent can only be to chase the wealthier). If player 1 were myopic, as discussed hitherto, her
decision to relocate would soley be based on the moving costs. Assume, for simplicity, that these costs
are lump-sum of size c > 0 whenever an agent decides to relocate and 0 whenever an agent decides to
stay. Hence, if player 1 were myopic, she would relocate whenever Y+y

2 − 0 < Y − c
δ , or, equivalently,

c < δ Y−y2 . In contrast, if 1 were strategic, then 1 would base her decision to relocate on whether agent
2 would ‘fight’ her relocation (and also relocate, within radius r of agent 1) or not and on whether
relocating is generally more profitable than staying. Hence, she would relocate whenever agent 2 would
not relocate and when Y − c ≥ Y ′ = (1 − δ)Y + δ Y+y

2 — the left-hand side of the last equation is the
maximum she could earn when she chose R in the above game tree and the right-hand side is what she
would earn if she chose S, since player 2 would, in fact, never play R in the latter case. But, since the
specification is symmetric, agent 1 would thus relocate whenever c ≥ δ Y−y2 and c < δ Y−y2 , since myopic
agent 2 would relocate precisely when a myopic agent 1 would. Hence, since this requirement on c is
contradictory, a strategic agent 1 would, in fact, never relocate, if she was first to move (trivially, she
would not relocate if she was outside a radius r of agent 1’s location). The reason is, to summarize, that
moving costs are either so high that it does not pay to relocate, or else, if they are low enough, then
agent 1 would also relocate, resulting in the lowest possible payoff of Y ′ − c for agent 1.

Thus, the behaviors of a strategic agent and a myopic agent can be quite different. However, the
inference problems that a strategic agent faces may become quite challenging, as agent number size
increases and as the strategic agent may also want to include future time points t, t+1, . . ., appropriately
discounted, into consideration. Moreover, the problem becomes even more complicated when moving
costs are not lump-sum but, e.g., linear in distance, and when wpi,pj assumes more complex forms (than
a uniform weighting when the distance between pi and pj is less than r, and zero otherwise). Thus, we
find the inclusion of more rational players unrealistic, from a practical viewpoint concerning the inference
problems such agents would have to solve,28 while it is, of course, unclear how strategic agents would
change resulting distributions of city sizes, as is our work’s main goal.

City size distributions

We analytically derive city size distributions for our simple setup as discussed in Section 3.4 for small
numbers n of agents under the assumptions stated at the beginning of the current section; in particular,
we assume that moving costs are always zero. For simplicity, assume that the agents’ world X is a one-
dimensional grid of size N , with N points, that is, X = {1, . . . , N}. Define, as indicated above, a city as
a ‘continguous’ group of agents on the grid with no ‘empty’ spaces in between. Moreover, assume that
r in Equation (3.4.5) is 1, so that agents have to ‘live’ directly next to each other in order to be in the
same neighborhood (i.e., be influenced by each other’s wealth levels) and assume that N is sufficiently
large.29 Also assume that all agents have different initial incomes Y and that they are initially placed
uniformly randomly on the grid (with the restriction that players cannot occupy the same grid positions).
We remark that our analysis here is no more than a toy analysis because what really interests us are
city size distributions in the case when n becomes large. Nonetheless, even the present analysis will be

28Full rationality would also require knowledge of whether other agents are myopic or strategic, knowledge of their
moving costs in case of moving cost heterogeneity, etc.

29Such that, e.g., agents can always relocate to empty regions.
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insightful, in particular, since it outlines agents’ clustering tendencies in our model.
The case n = 2. In the case of two agents, there can only be one or two cities; under random uniform

initialization, the probability of one city is 2
N , and the probability of two cities is 1− 2

N .30 Naturally, if
there are two cities, both will consist of one agent, and if there is one city, it will consist of two agents.
In the first round t = 0, if the poor player is first to move, there will subsequently be two cities since
the rich player, being the last to move, will move away from the poor. If the rich player is first to move,
there will be one city. So, if both events are equally likely, there will be two cities with probability 1/2
and one city with probability 1/2. This probability distribution is stable over time.

The case n = 3. Assume there are three players A,B,C with initial incomes A < B < C. In the case of
three players, there can be one, two, or three cities. Initially, the probability of one city with three agents

is 6
N(N−1) = O(1/N2), the probability of two cities with one and two agents is 6(N−3)

N(N−1) = O(1/N), and

the probability of three cities with one agent each is the remainder, 1− 6(N−3)
N(N−1) −

6
N(N−1) = 1− 6(N−4)

N(N−1) .

After one round of relocations, city size distributions are as shown in Table 3.1. Note that, although
the case n = 3 is really just a toy case, the ‘Zipf outcome’ — largest city has double the size of the
second largest, which obtains in the case of two cities — is much more likely now than under random
placement of the agents. Also note that clustering — either one or two cities — now has probability
2/3 (independent of the grid size N), whereas it has probability O(1/N) for random allocations, which
quickly converges toward zero as N becomes large. This probability distribution is stable over time.

Movement order 1 city 2 cities 3 cities
A,B,C 1
A,C,B 1
B,A,C 1
B,C,A 1
C,A,B 1
C,B,A 1

Total Probability 2
6

2
6

2
6

Table 3.1: Table entries are probabilities of the respective outcome (1, 2, or 3 cities) under the given
movement order. Missing probabilities are taken as zero.

3.6 Simulation results

We consider the following parametrization. The world is a one-dimensional grid of size N , with places
p ∈ X = {1, . . . , N}, where we choose N = 1000. Moreover, we set the number of agents, n, to 300.
Agents conduct a local search for optimal grid positions by considering the ρ, ρ ∈ N, places ‘around’
their current position for potential relocation. Agents i ∈ [n] have moving costs of

c(pi, q) =

{
χ ‖pi − q‖ if ‖pi − q‖ ≤ ρ
∞ else

,

where pi, q ∈ X (pi being agent’s i current position), and where we set χ to the ‘low’ value of 0.001.
Each agent i is initially assigned a random place pi ∈ X and a random wealth level Yi,0 ∼ U(x0, x1),
where U(x0, x1) is the continuous uniform density function on the interval [x0, x1]. As to determining
the average wealth at any given grid point p ∈ X, we use the (normalized and truncated) normal density
function centered at p with the ‘low’ variance of 1; we set the density weights to zero for agents at
positions q ∈ X, with ‖p− q‖ > 5. Finally, as before, we define a city as a continguous set of occupied
grid points with no empty spaces in between. We summarize the model calibration in Table 3.2.

30If n players are placed in N bins, the probability that they are all next to each other — i.e., their positions are

(i, i+ 1, . . . , i+ n) for some i = 1, . . . , (N − n) — is
N−(n−1)(

N
n

) = n!
N(N−1)·...·(N−n+2)

.
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Parameter Value Meaning
N 1000 grid size
n 300 number of agents
χ 0.001 inertia/moving cost parameter
x0 50 Yi,0 ∼ U(x0, x1)
x1 60 Yi,0 ∼ U(x0, x1)
δ ∈ [0, 1] adaption rate
ρ ∈ {5, 10, 20, 30, 100, 400, N} spatial reach
T ∈ {5000, 10000} number of periods

wpi,pj f̃(pj ; pi, 1, pi − 5, pi + 5) weight for agent j, at pj , with respect to agent i, at pi

Table 3.2: Model calibration. By f̃(x;µ, σ2, a, b) we denote the (adequately normalized and truncated)
normal density function with mean µ, variance σ2, and truncation parameters a and b.

In the subsequent analyses, all values discussed are averages over 10 runs, and numerical results are
taken after T = 5000 iterations, unless stated otherwise. Also note that we estimate β on the basis of the
10% richest, mainly due to our small size of n (e.g., it would not be expedient to estimate a regression
on the basis of 1% · n = 3 data points).

3.6.1 Linear growth

First, consider the case where the random component in (3.4.1) is close to zero and iid across agents.
We set

εi,t+1 ∼ N (0.2, 1),

where the mean of 0.2 is chosen so as to avoid that agents get poorer, on average, from period to period
due to positive moving costs. Note also that if δ was zero (and ignoring moving costs) this would entail
that Yi,t, defined in (3.4.1), follows, in expectation, an affine-linear growth process,

E[Yi,t] = E[Yi,t−1 + µ] = µ · t+ Yi,0,

where, in our case, µ = 0.2. By simulation, we find that such a process, by itself, leads to a large Pareto
coefficient β for the top 10% wealthiest of around 36.69 after T = 5000 periods, where the fit is very
good, with R2 value of about 98%.31

We outline results in Figures 3.6, 3.7, 3.8, 3.9 and Table 3.3. Figures 3.6 and 3.7 show a distribution
of wealth and agents across time and grid positions for different parameter values of ρ and δ. In the
figures, the y-axis has periods t = 0, . . . , T (from top to bottom) (with T = 5000), and the x-axis has
grid positions 1, . . . , N = 1000; the blue color marks empty grid points and a stronger red signals higher
wealth of the agent occupying the respective position. We see how different parameter values affect the
distributional pattern of cities in the world.

An increase of the adaption rate δ (shown in Figure 3.6) leads to a larger (and faster) agglomeration
of wealth and agents in a particular area of the world. Note that, when δ becomes larger, agents do
not become richer, on average, but wealth becomes shared by a larger group of agents, which entails
increased clustering since the group of agents that attracts others increases. For sufficiently large δ and
ρ, we find a typical ‘poor chasing the rich’ outcome; rich agents cluster in one ‘end’ of the world, with
the poorer attaching close-by. That the rich concentrate in an ‘end’ of the world is not surprising in this
case, since in our model, the best way for the rich to escape the poor is to locate in an area with as
little potential influence of the poor upon them as possible. It is intuitive that this leads to a large (rich)
city in one ‘end’ of the world and several smaller cities in the direction of the opposite end, because all
agents attempt to secure a place within the world’s (single) rich habitat, and because rich agents have
no incentive — due to the size of ρ, which is not large enough to reach isolated grid points, and the lack

31We simulated with different levels of x0 and x1 and always found that β is significantly larger than 10 after 5000
periods.
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of attractiveness of reachable points — to leave their neighborhood. Moreover, the fact that places in
the rich neighborhood are thus scarcer than other places may be considered an endogenous analogue of
an increased ‘rental price’ in rich environments that would typically be observed in real economies.

Figure 3.7 illustrates how ρ affects distributional patterns of cities in the world. The smaller ρ,
the more does the world decompose into smaller local ‘settlements’ distributed more evenly. In the
bottom right plot of Figure 3.7, we display a situation where ρ is a random variable; with probability πi
(proportional to the size of agent i’s wealth), we set ρ = N and with 1 − πi, we set ρ = 10. This leads
to a slightly larger agglomeration of wealth and agents again, but also to individual rich agents moving
to isolated places from time to time, and thus to a more even spread of agents across the world than in
Figure 3.6. It may additionally lead to slightly ‘better’ Zipfean city size distributions, as discussed in
Figure 3.8 and Table 3.3.

From Table 3.3, we deduce that for many different calibrations of ρ and δ, our model entails city size
distributions with Zipf parameter α in the ‘right’ range between 0.8 and 1.5. As a reference, note that
we found by simulation that distributing n = 300 agents randomly among N = 1000 grid points implies
a coefficient α of around 2.128 with R2 value of around 0.839. Our model performs much ‘better’, even
with a value of δ equal to 0; for example, for δ = 0 and ρ ∈ {10, 20}, α is on average smaller than 1.5
after T = 5000 periods and the R2 value is close to 90%. We obtain ‘best’ results for δ above/around 1%
and ρ relatively small, in the range between ρ = 20 and ρ = 100; the R2 fit is then usually larger than
90% and α is close to unity. Moreover, Figure 3.9 shows that, at least for specific parameter settings of
ρ and δ, α is quite stable over time and it usually takes fewer than 1000 periods for it to settle within a
narrowly defined band around its asymptotic value.

Concerning the Pareto wealth coefficient β, its size is typically magnitudes too large under the given
calibration and the ‘linear’ wealth growth process. While the fit is usually good (R2 above 90% for small
δ) — note also that the ‘correct’ form of the wealth distribution function is usually apparently reproduced
by our model (cf. Figure 3.8), i.e., a Boltzmann-Gibbs type distribution for ‘small’ wealth levels w and a
Pareto distribution for ‘large’ w — the lowest value recorded in the simulations summarized in Table 3.3
is more than five times larger than observed in real economies. This is a rather unsurprising result, given
the high level of β under δ = 0 and ignoring moving costs (see above), the system’s inherent tendency
toward convergence (cf. Proposition 3.5.2), and the thus implied assimilation of agents’ wealth levels.
Accordingly, Gini coefficients, which measure inequality, are also quite small, usually only marginally
exceeding 0.2, which is a lower value than observed for most real economies world-wide, where wealth
Gini coefficients are usually found to lie in the range 0.6-0.8 and income Gini coefficients in the range
0.3-0.5 (cf. Davies et al., 2009). Moreover, in Figure 3.9, we see that β is much less stable than α under
the given calibration, displaying considerable fluctuation over time.

δ
0.001 0.005 0.015 0.05 0.1 0.5

α size 1.662 1.198 0.994 0.961 0.942 0.938
R2 0.883 0.898 0.920 0.941 0.920 0.905

β size 142.85 90.90 45.45 15.62 14.92 15.62
R2 0.976 0.956 0.938 0.876 0.834 0.767

ρ
5 10 20 10, πi

α size 0.725 0.758 0.868 0.823
R2 0.892 0.849 0.911 0.943

β size 200.0 76.92 76.92 55.55
R2 0.972 0.865 0.818 0.908

ρ
5 10 20 400 10, πi

α size 0.651 0.847 0.892 1.563 0.888
R2 0.770 0.909 0.918 0.893 0.830

β size 142.86 125.0 90.90 50.0 166.67
R2 0.972 0.939 0.921 0.978 0.965

ρ
5 10 20

α size 0.705 1.448 1.483
R2 0.570 0.893 0.890

β size 38.46 33.33 25.64
R2 0.963 0.968 0.977

Table 3.3: Calibration as in Table 3.2. From left to right and top to bottom: ρ = 100, δ = 0.05,
δ = 0.015, δ = 0. Linear growth.
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Figure 3.6: Calibration as in Table 3.2, and ρ = 100 throughout. From top to bottom: δ = 0.001,
δ = 0.005, δ = 0.05, δ = 0.5. Linear growth.
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Figure 3.7: Calibration as in Table 3.2, and δ = 0.05 throughout. From top to bottom: ρ = 5, ρ = 10,
ρ = 20, ρ = N with prob. πi and ρ = 10 with prob. 1− πi. Linear growth.
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Figure 3.8: City size and wealth distributions after T = 5000 periods. Calibration as in Table 3.2, and
δ = 0.05 throughout. From left to right and top to bottom: ρ = 10 with prob. 1− πi, ρ = 100, ρ = 20,
ρ = 5. The marked slope in the wealth distribution curve has value −200. Linear growth.

3.6.2 Exponential/proportional growth

Next, consider the following specification of εi,t+1,

εi,t+1 ∼ N (µYi,t, κ ‖Yi,t‖), (3.6.1)

where µ ∈ (0, 1) and κ ∈ (0, 1). Note that, if δ, the adaption rate toward a neighborhood’s average
wealth level, were zero and ignoring moving costs, this would entail the following evolution of Yi,t+1, as
defined in (3.4.1):

Yi,t+1 = (1 + µ)Yi,t + νi,t+1, (3.6.2)

where νi,t+1 ∼ N (0, κ ‖Yi,t‖), which implies, in expectation, an exponential growth process,

E[Yi,t] = (1 + µ)tYi,0.

Specifications (3.6.1) and (3.6.2) can be interpreted as an instantiation of ‘proportional attachment’; the
increase in an agent’s wealth level between two periods is proportional, in expectation, to the size of the
agent’s current wealth level — the richer experience a larger increment. That we choose the variance
of εi,t+1 to be a function of ‖Yi,t‖ seems plausible and entails a constant relative standard deviation of
εi,t+1 across agents. In the following, we set µ = 0.0005 and κ = 0.1. By simulation, we find that this
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Figure 3.9: Parameter evolution of α, β, and average wealth over time. Average wealth and β are drawn
with respect to the y2-axis indicated on the right side of each plot. Calibration as in Table 3.2, and
δ = 0.05. From left to right: ρ = 100, ρ = 20, ρ = 10 and πi. Linear growth.

parametrization leads to a coefficient β of around 3.02, with R2 value of around 0.950, under δ = 0 and
no moving costs.

We summarize results in Table 3.4 and Figure 3.10. When contrasting with the results under linear
growth, we find that the growth process may also affect city size distributions. For example, under
δ = 0.015, α is closer to unity under exponential growth than under linear growth (for ρ = 5, 10, 20),
with no worse R2 values. The best result is, again, obtained for δ around 1% and ρ relatively small,
this time around 30.32 In that case, α is close to unity and β is smaller than 3 after 5000 periods, with
R2 values larger than 90%. Figure 3.10 shows that β is in the range between 2 and 3 after about 4500
periods and seems to remain stable, although still fluctuating more heavily than α.

3.7 Conclusion

In the current work, we have investigated city size and wealth distributions in a unified framework.
Our primary goal was the study of city size distributions in an economy, for which we have proposed
a Tiebout-like sorting model in which boundedly rational agents have utilities on wealth and relocate,
by playing myopic best responses to the current ‘state of affairs’, on the basis of the attractiveness of

32For larger ρ, we frequently noticed a ‘poverty trap’, in which agents become poorer initially — due to higher average
moving costs — and can then not recover due to the small size of µ.
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δ
0.001 0.005 0.015 0.02

α size 1.490 1.500 1.157 1.147
R2 0.890 0.891 0.927 0.938

β size 3.401 6.667 2.873 2.994
R2 0.960 0.947 0.921 0.813

ρ
5 10 20 10, πi

α size 0.664 0.969 0.988 1.281
R2 0.852 0.928 0.938 0.891

β size 12.821 11.765 6.172 15.385
R2 0.930 0.930 0.939 0.955

ρ
5 10 20

α size 0.850 1.295 1.321
R2 0.566 0.855 0.875

β size 2.81 2.73 2.403
R2 0.948 0.947 0.947

Table 3.4: Calibration as in Table 3.2. From left to right and top to bottom: ρ = 30, δ = 0.015, δ = 0.
Exponential growth.
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Figure 3.10: Calibration as in Table 3.2, and δ = 0.015 and ρ = 30. Parameter evolution of α, β, and
average wealth over time, and city size and wealth distributions after T = 5000 periods. Average wealth
is drawn with respect to the y2-axis indicated on the right side of the respective plot. The marked slope
in the wealth distribution curve has value −2.873. Exponential growth.

neighborhoods, which, in turn, have (positive or negative) externalities upon their community members.
We have examined analytical results for this setup — such as the non-existence of pure strategy Nash
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equilibria in the simultaneous move game underlying our agents’ relocation decisions such that the
model we have specified is one of the type where the poor are chasing the rich who, in turn, flee from
the former — and we have also challenged the myopia condition on our agents, showing that behavior
of more rational agents would plausibly be different, although also considerably more costly in terms
of processing costs for inference. Moreover, we have shown, by simulation, that our model seems to be
very well capable of reproducing the Zipf phenonemon whereby a plot of city size versus rank yields
(approximately) a straight line in log-log-space with slope closely centered around −1. Since our agents’
decision variables are wealth, we are naturally led, within our framework, to the investigation of wealth
distributions in our economy, which, ‘in reality’, follow a Pareto distribution form. We have argued, in
the analytical results in Section 3.5, that our approach entails an assimilation of wealth levels, over time,
thus generating a too ‘flat’ or ‘equal’ distribution among the richest of a society. To this end, we have
added a stochastic component to individual agents’ wealth levels, which may be specified such that it
is in accordance with the rule of proportional attachment and implies an exponential growth process.
Nontrivially, this apparently leads to the desired result of an economy in which, concurrently, both the
Zipf and Pareto law are obeyed.

A few remarks on our results must be made. First, the fact that exponential growth is required by
our model seems to be too specific an assumption, on the one hand, since exponential economic growth
is presumably a feature of the last few hundred years exclusively, in effect only since the industrial
revolution, whereas most of human history was, by all appearances, characterized by virtually no growth
at all, at least on average. On the other hand, it evidently opposes the wealth distribution models
proposed in econophysics, which assume zero-sum wealth processes. Two things might be answered to
this; namely, that a) the universal applicability of Pareto’s law is apparently still not fully ascertained
to date, and some authors call it a property of capitalist societies (cf. Düring, Matthes, and Toscani,
2008), for which exponential growth is valid, allegedly. Moreover, b) it must be said that our model
does presumably not necessarily require exponential growth but could probably do with a proportional
attachment rule without such implications (e.g., due to high enough moving costs, some agents having
large negative net wealth and thus clearing the balance, etc.); also note that in Figure 3.10, there is in
fact practically no growth at all for the first 5000 periods and still the Pareto coefficient approaches 3.

Next, the result that Zipf’s law is apparently ‘best’ reproduced for small values of δ around 1% appears
to be a plausible and consistent outcome. It is known that, for example, peer effects at the work-place
are usually between 5 and 15% (cf. Ichino and Maggi, 2000; Shvydko, 2008), and neighborhood effects
in a community should certainly be a bit lower, as the degree of interaction between individuals, there,
is plausibly lower. Overall, in the simulations, we find δ on the order of 1% and a ‘moderate’ spatial
reach ρ of, about, 20 to 100 — these numbers plausibly depend on the grid size N — to lead to city
size distributions that match well the Zipf paradigm.33 Thus, in our model, as in Mansury and Gulyás
(2007), ‘bounded rationality’ in the form of restricted spatial reach seems to be a contributing factor to
generating Zipfean city size distributions.

For future work, it might be of interest to find an ‘agent-based’ — instead of a stochastic — solution for
generating Pareto wealth distributions within our Tiebout-like sorting model. Potentially, the inclusion
and adequate weighting of further variables such as those discussed in Section 3.4 might be helpful here,
but we think this unlikely. Presumably, unless a process is defined whereby agents veritably lose and
gain wealth beyond the rather small neighborhood effects implemented — be it through ‘gambling’ or
other mechanisms — a wealth distribution that is unequal ‘enough’ in the rich tail will not be achieved.
Another aspect that might be worth investigating is to individualize the spatial reach parameter ρ and/or
moving costs, e.g., by time-dependent adaptation of χ (increases might be thought of as representing
the concept of ‘familiarity’/stronger social ties over time) or wealth-dependent adaptation (it might be
argued that wealthier agents should incur smaller costs, possibly, due to superior technology, information
asymmetries, etc.). Although we are uncertain whether this can qualitatively affect outcomes, it must
be noted that individualizing saving propensities in the wealth distribution model of A. Chatterjee,
Chakrabarti, and Manna (2003) has turned an exponential regime into a Pareto regime. To check for
the robustness of our results, implementing our model in a two-dimensional scenario might be a further

33It is worthwhile pointing out that δ = 0, that is, absence of neighborhood effects, typically does not result in Zipf
coefficients close to 1, as indicated in the respective tables given above.
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aspect of concern,34 as well as running more extensive simulations, including larger grid sizes N and
agent set sizes n.

Appendix 3.A Continuous time

It is insightful to solve the problem discussed in Section 3.5, the convergence of Yt defined in Equation
(3.5.1) as t→∞, in continuous time. To this end, first rewrite (3.5.1) as

Yt+1 −Yt = δ(Yt1−Yt).

In continuous time (t ∈ [0,∞)), this equation becomes

Ẏ(t) = AY(t), A =
δ

n


1− n 1 . . . 1

1 1− n . . . 1
... . . .

. . .
...

1 1 . . . 1− n


︸ ︷︷ ︸

=:B

. (3.A.1)

Matrix B has characteristic polynomial pB(λ) = det (B− λIn) =
(
λ− (−n)

)n−1
λ. To see this, consider

more generally the matrix Cn ∈ Rn×n,

Cn :=


α 1 . . . 1
1 α . . . 1
... . . .

. . .
...

1 1 . . . α

 ,

for α ∈ R, whose characteristic polynomial is found by considering the following determinant,

det (Cn − λIn) = det


α− λ 1 . . . 1

1 α− λ . . . 1
... . . .

. . .
...

1 1 . . . α− λ

 = det


α− λ− 1 −(α− λ− 1) . . . 0

1 α− λ . . . 1
... . . .

. . .
...

1 1 . . . α− λ


= (α− λ− 1) det (Cn−1 − λIn−1) + (α− λ− 1)n−1.

We claim that Cn has characteristic polynomial
(
λ − (α − 1)

)n−1
(λ − (α + n − 1)), and, via the given

representation of det(Cn − λIn), this easily follows inductively. Then, substituting α = 1 − n yields
our above claim for the matrix B. Consequently, matrix A above has eigenvalues (λ1, . . . , λn−1, λn) =
(−δ, . . . ,−δ, 0). Since A is symmetric, we can therefore diagonalize A as

A = V


−δ 0 . . . . . . 0
0 −δ 0 . . . 0
... . . .

. . . . . .
...

0 0 . . . −δ 0
0 0 . . . 0 0

Vᵀ,

where V is an orthonormal matrix, i.e., VᵀV = In (denoting by Vᵀ the transpose of V). Let v1, . . . ,vn
denote the columns of V, i.e., the eigenvectors corresponding to the eigenvalues −δ, . . . ,−δ, 0. Since
(3.A.1) represents a system of linear differential equations, it is well known (cf. Hirsch and Smale, 1995)
that its general solution is given by

Y(t) =

n∑
i=1

ci exp(λit)vi,

34In a preliminary two-dimensional study, we could replicate Zipf city size distributions, under plausible parameter
calibrations.
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where ci ∈ R are constants. In our case, therefore

Y(t) =

n−1∑
i=1

ci exp(−δt)vi + cn exp(0 · t)vn =

n−1∑
i=1

ci exp(−δt)vi + cnvn.

Hence, since δ > 0, Y(t) → cnvn as t → ∞. Let us determine the limit vector cnvn. Note that the
eigenvalue zero (to which vn corresponds) entails

Avn = 0 · vn = 0.

By the structure of A, this then implies that vn = (β, . . . , β)ᵀ, for some constant β ∈ R. Moreover, we
obtain the coefficients vector c = (c1, . . . , cn)ᵀ by evaluating Y(t) at time 0,

Y0 = Y(0) = c1v1 + c2v2 + · · ·+ cnvn = Vc.

Since V is orthonormal, then,

c = VᵀY0.

By inspection of both sides of this equality, cn is the sum vᵀ
nY0 = vn,1Y0,1 + · · · + vn,nY0,n = β(Y0,1 +

· · ·+ Y0,n) = βY0n. Thus,

cnvn = Y0 · n
(
β2 . . . β2

)ᵀ
= Y0 · n

(
1/n . . . 1/n

)ᵀ
= Y01,

since vn is orthonormal, i.e., nβ2 = vᵀ
nvn = 1. In other words, Y(t) → Y01 as t → ∞, which is the

same result we have derived in Section 3.5 for the discrete analogue of Equation (3.A.1). In Figure 3.11
below, we show a sample evolution path of Y(t) in (t, Y1(t))/(t, Y2(t)) space for n = 2 agents and initial
endowments Y1(0) = 0.9, Y2(0) = 0.2, and δ = 0.1 and δ = 0.2.

Figure 3.11: Sample evolution path of Y(t) = (Y1(t), Y2(t)) in (t, Y1(t))/(t, Y2(t)) space for n = 2 agents
and initial endowments a = Y1(0) = 0.9, b = Y2(0) = 0.2, and δ = 0.1 and δ = 0.2. In the plot, we
denote Y1 as x and Y2 as y.
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[22] Bertram Düring, Daniel Matthes, and Giuseppe Toscani. Kinetic equations modelling wealth redis-
tribution: a comparison of approaches. eng. Discussion paper series // Zentrum für Finanzen und
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Ehrenwörtliche Erklärung

Ich habe die vorgelegte Dissertation selbst verfaßt und dabei nur die von mir angegebenen Quellen
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